Answer:
Consider the following calculations
Step-by-step explanation:
Since 1 Blimp uses 2 components of B and C each
=> choosing 2 components of B(remaining after using in other prototypes) for 1st model= 22C2
choosing 2 components of B(remaining after using in other prototypes) for 2nd model= 21C2
choosing 2 components of B(remaining after using in other prototypes) for 3rd model= 20C2
choosing 2 components of B(remaining after using in other prototypes) for 4th model= 19C2
choosing 2 components of B(remaining after using in other prototypes) for 5th model= 18C2
and choosing 2 components of C(remaining after using in other prototypes) = 24C2
Similarly for C
P(5 prototypes of Blimp created)=[(22C2 / 25C2 )*(24C2 / 25C2 )] + [(21C2 / 25C2 )*(23C2 / 25C2 )]+[(20C2 / 25C2 )*(22C2 / 25C2 )]+[(19C2 / 25C2 )*(21C2 / 25C2 )]+[(18C2 / 25C2 )*(20C2 / 25C2 )]
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ N(\stackrel{x_1}{-3}~,~\stackrel{y_1}{10})\qquad A(\stackrel{x_2}{6}~,~\stackrel{y_2}{3})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ NA=\sqrt{(6+3)^2+(3-10)^2}\implies NA=\sqrt{130} \\\\[-0.35em] ~\dotfill\\\\ A(\stackrel{x_2}{6}~,~\stackrel{y_2}{3})\qquad D(\stackrel{x_1}{6}~,~\stackrel{y_1}{-1}) \\\\\\ AD=\sqrt{(6-6)^2+(-1-3)^2}\implies AD=4 \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20N%28%5Cstackrel%7Bx_1%7D%7B-3%7D~%2C~%5Cstackrel%7By_1%7D%7B10%7D%29%5Cqquad%20A%28%5Cstackrel%7Bx_2%7D%7B6%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20NA%3D%5Csqrt%7B%286%2B3%29%5E2%2B%283-10%29%5E2%7D%5Cimplies%20NA%3D%5Csqrt%7B130%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20A%28%5Cstackrel%7Bx_2%7D%7B6%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%5Cqquad%20D%28%5Cstackrel%7Bx_1%7D%7B6%7D~%2C~%5Cstackrel%7By_1%7D%7B-1%7D%29%20%5C%5C%5C%5C%5C%5C%20AD%3D%5Csqrt%7B%286-6%29%5E2%2B%28-1-3%29%5E2%7D%5Cimplies%20AD%3D4%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

now that we know how long each one is, let's plug those in Heron's Area formula.
![\bf \qquad \textit{Heron's area formula} \\\\ A=\sqrt{s(s-a)(s-b)(s-c)}\qquad \begin{cases} s=\frac{a+b+c}{2}\\[-0.5em] \hrulefill\\ a=\sqrt{130}\\ b=4\\ c=\sqrt{202}\\[1em] s=\frac{\sqrt{130}+4+\sqrt{202}}{2}\\[1em] s\approx 14.81 \end{cases} \\\\\\ A=\sqrt{14.81(14.81-\sqrt{130})(14.81-4)(14.81-\sqrt{202})} \\\\\\ A=\sqrt{324}\implies A=18](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Ctextit%7BHeron%27s%20area%20formula%7D%20%5C%5C%5C%5C%20A%3D%5Csqrt%7Bs%28s-a%29%28s-b%29%28s-c%29%7D%5Cqquad%20%5Cbegin%7Bcases%7D%20s%3D%5Cfrac%7Ba%2Bb%2Bc%7D%7B2%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D%5Csqrt%7B130%7D%5C%5C%20b%3D4%5C%5C%20c%3D%5Csqrt%7B202%7D%5C%5C%5B1em%5D%20s%3D%5Cfrac%7B%5Csqrt%7B130%7D%2B4%2B%5Csqrt%7B202%7D%7D%7B2%7D%5C%5C%5B1em%5D%20s%5Capprox%2014.81%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%3D%5Csqrt%7B14.81%2814.81-%5Csqrt%7B130%7D%29%2814.81-4%29%2814.81-%5Csqrt%7B202%7D%29%7D%20%5C%5C%5C%5C%5C%5C%20A%3D%5Csqrt%7B324%7D%5Cimplies%20A%3D18)
So for a tangent and a secant, you multiply x^2 (since it’s a tangent you square it) and test that equal to 6(6+12) so now you have x^2=6(6+12). solve for X to get sqrt(108) or 10.4
the equation is — tan^2=outside x whole thing
remember to ADD the entire secant (so add 6 plus 12) don’t multiply them (6x12)
x^2=6(6+12)
x^2=6(18) OR x^2=36+72
x^2=108
x=sqrt(108) OR x=10.4
<em>Coplanar</em> means "lying on the same plane," while <em>colinear </em>means "lying on the same line." In this problem, all four points A, B, C, and D are coplanar - they all lie on the plane
- so we just need to find the points that lie on the same line. Though points C and B <em>would </em>be colinear if there was a line drawn between them, there's no such line in this problem, so we can rule that out. We notice one line drawn on the plane, and points A, C, and D lying on it, so we can say that points A, C, and D are both coplanar and colinear.
Answer:
The point will be on the line.
Step-by-step explanation: