Answer:
Option A
The p-value is less than the significance level of 0.05 chosen and so we reject the null hypothesis H0 and can conclude that the proportion of the subjects who have the necessary qualities is less than 0.2.
Step-by-step explanation:
Normally, in hypothesis testing, the level of statistical significance is often expressed as the so-called p-value. We use p-values to make conclusions in significance testing. More specifically, we compare the p-value to a significance level "α" to make conclusions about our hypotheses.
If the p-value is lower than the significance level we chose, then we reject the null hypotheses H0 in favor of the alternative hypothesis Ha. However, if the p-value is greater than or equal to the significance level, then we fail to reject the null hypothesis H0
though this doesn't mean we accept H0 automatically.
Now, applying this to our question;
The p-value is 0.023 while the significance level is 0.05.
Thus,p-value is less than the significance level of 0.05 chosen and so we reject the null hypothesis H0 and can conclude that the proportion of the subjects who have the necessary qualities is less than 0.2.
The only option that is correct is option A.
Answer: 40.27
Step-by-step explanation:
Let their September bill be x
Therefore, the October bill will be = x - 3.87.
Therefore, the addition of both bills will be:
x + (x - 3.87) = 237.75
x + x - 3.87 = 237.75
2x - 3.87 = 237.75
2x = 237.75 + 3.87
2x = 241.62
x = 241.62/2
x = 120.81
Therefore, September bill was 120.81
Since the 3 students share the bull equally, the amount owed by each will be:
= 120.81 / 3
= 40.27
Each person owes 40.27
Answer:
Yes
Step-by-step explanation:
Just trust me it does
Answer:
0.1505 = 15.05% probability that the hockey team wins 6 games in November
Step-by-step explanation:
For each game, there are only two possible outcomes. Either the team wins, or it does not. The probability of winning a game is independent of winning other games. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
The probability that a certain hockey team will win any given game is 0.3723
So 
12 games in November
So 
What is the probability that the hockey team wins 6 games in November?
This is 


0.1505 = 15.05% probability that the hockey team wins 6 games in November
What are the steps? Is there a photo?