Yeah, I think you just need to get permission from the school itself. I have seen people do it before at my old school. I would ask your friend and see if they could talk to someone about it.
Answer:
Fonts for Android and iPhone - www.fontskeyboard.com/share-now
Explanation:
☀︎︎☹︎♫︎☹︎♫︎
The pH of the solution of the given acid is 3.099
Let HX be the weak acid:
HX ⇌
+ 
For which:
= [
][
] / [HX]
If
lies in the range
we can assume that the equilibrium concentrations used in the expression are a good enough approximation to the initial concentrations.
Rearranging and taking negative logs of both sides gives:
pH = ![\frac{1}{2} [pK_{a} - loga]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%5BpK_%7Ba%7D%20-%20loga%5D)
a is the concentration of the acid.
= -log (2×
) = 5.69
pH = ![\frac{1}{2} [5.69- (-0.508)]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%5B5.69-%20%28-0.508%29%5D)
pH = 3.099
Learn more about pH of acid here;
brainly.com/question/13043236
#SPJ4
Answer:
Option D is correct = 58 g
Explanation:
Data Given:
mass of LiOH = 120 g
Mass of Li3N= ?
Solution:
To solve this problem we have to look at the reaction
Reaction:
Li₃N (s) + 3H₂0 (l) -----------► NH₃ (g) + 3LiOH (l)
1 mol 3 mol
Convert moles to mass
Molar mass of LiOH = 24 g/mol
Molar mass of Li₃N = 35 g/mol
So,
Li₃N (s) + 3H₂0 (l) -----------► NH₃ (g) + 3LiOH (l)
1 mol (35 g/mol) 3 mol (24 g/mol)
35 g 72 g
So if we look at the reaction 35 g of Li₃N react with water and produces 72 g of LiOH , then how many g of Li₃N will be react to Produce by 120 g of LiOH
For this apply unity formula
35 g of Li₃N ≅ 72 g of LiOH
X of Li₃N ≅ 120 g of LiOH
By Doing cross multiplication
Mass of Li₃N = 35 g x 120 g / 72 g
mass of Li₃N = 58 g
120 g of LiOH will produce from 58 g of Li₃N
So,
Option D is correct = 58 g
Answer:
0.5M
Explanation:
The equation for molarity is:
- M =
; where the "M" stands for molarity, the "mol" stands for moles of solute and the "liters" means the volume in liters of solution.
We are given that there are:
- 1.80 moles of NaCl (the moles of solute)
- 3.60 Liters of solution (the volume in liters of solution)
Now we just plug those numbers into the formula and get our answer:
- M=
= 0.5M
After doing the math and dividing the moles of solute by the liters of solution, we get that the molarity of the solution is 0.5M.