Answer:
E = 8.26*10⁻¹⁰ N/C, due south.
Explanation:
- Assuming no other forces acting on the electron than the electrostatic force due to the electric field, we can apply Newton's 2nd law as follows:
- Solving for E, we can find its magnitude as follows:

- The direction of the electric field is by definition the one that would take a positive test charge, so if the electron is accelerated to the north, the electric field would exactly oppose to this direction, so it is directed due south.
Answer:
1.3 × 10⁸ e⁻
Explanation:
When a honeybee flies through the air, it develops a charge of +20 pC = + 20 × 10⁻¹² C. This is a consequence of losing electrons (negative charges). The charge of 1 mole of electrons is 96468 C (Faraday's constant). The moles of electrons representing 20 pC are:
20 × 10⁻¹² C × (1 mol e⁻/ 96468 C) = 2.1 × 10⁻¹⁶ mol e⁻
1 mole of electrons has 6.02 × 10²³ electrons (Avogadro's number). The electrons is 2.1 × 10⁻¹⁶ moles of electrons are:
2.1 × 10⁻¹⁶ mol e⁻ × (6.02 × 10²³ e⁻/ 1 mol e⁻) = 1.3 × 10⁸ e⁻
Answer:
Pressure
Surface
Flow
Fluency
Explanation:
*Surface
The surface tension is the force with which the surface molecules of a liquid are attracted to bring them inside and thus decrease the surface area.
*Flow
It is defined as resistance to flow. The viscosity of a liquid depends on the intermolecular forces:
-The higher the intermolecular forces of a liquid, its molecules have a greater difficulty moving between them, therefore the substance is more viscous.
-Liquids that are made up of long, flexible molecules that can bend and tangle with each other are more viscous.
* Pressure
if the molecules of the liquid have a greater intensity of intermolecular force, then they will be trapped in the liquid and will have less facility to pass into the gas phase.
on the contrary to lower intensity of intermolecular force, then the molecules can escape more easily to the gaseous state.
*Fluency
This property allows liquids to easily pass through a hole regardless of size, as long as this hole is at a lower or the same level of the container where the liquid is stored.
This property indicates the deformability of a liquid which is very wide without requiring mechanical stress.
I think the correct answer from the choices listed above is option C. The change in the statement that would make a more powerful goal would be to make <span>it measurable by explaining how far away the target is. Hope this answers the question. Have a nice day.</span>
Answer:
what? i cant understand you pls translate in English