Answer:
We are 98% confident interval for the mean caffeine content for cups dispensed by the machine between 107.66 and 112.34 mg .
Step-by-step explanation:
Given -
The sample size is large then we can use central limit theorem
n = 50 ,
Standard deviation
= 7.1
Mean
= 110
1 - confidence interval = 1 - .98 = .02
= 2.33
98% confidence interval for the mean caffeine content for cups dispensed by the machine = 
= 
= 
First we take + sign
= 112.34
now we take - sign
= 107.66
We are 98% confident interval for the mean caffeine content for cups dispensed by the machine between 107.66 and 112.34 .
Answer:
the answer is acute 35.
Step-by-step explanation:
Answer:
4/2
Step-by-step explanation:
Rise/Run
4/2
Answer:
About 9.4 units
Step-by-step explanation: