Answer:
Butanoic Acid:
I have attached the structure of Butanoic Acid. Please refer to the attachment.
Explanation:
Solution:
First of all, we need to calculate the double bond equivalent (DBE) for the compound given:
Compound = C4H8O2
DBE = (C +1) - (H + X - N)/2
C = no. of carbons
H = no. of Hydrogen
X = no. of Halogens
N = no. of Nitrogen
DBE = (4+1) - (8/2)
DBE = 5-4
DBE = 1
It indicates the presence of 1 double bond in the possible structure.
Further structure can be identified by looking the peak values of the spectrum. So, we have,
2500 - 3300 = it indicates the presence of -COOH group
1720 = it indicates the (C=0) stretching
1200 = It indicates the (C-O) stretching
SO, the possible structure is
Butanoic Acid:
I have attached the structure of Butanoic Acid. Please refer to the attachment.
Answer:
As you haven't explained what measurements you took before solving this problem, I will explain the general procedure to evaluate the efficiency of a kettle. I hope it helps you. I´ll send an attachement file with the full answer, since I couldn't write it here.
I assume that the material that is going to be heated in the kettle is water.
1- You have to boil water in it and take the time it takes to its boiling point (in seconds).
2- You have to evaluate the amount of energy the water absorbed Q with the efficiency formula which I explain in the attachement file.
3- Divide Q by the time it took to bring the water to boiling so you can have the power it consumed.
4- You divide the last value you obtained by the Kettles's power rating.
5- Multiply the last value by 100 to obtain a percentage value of efficiency.
Explanation:
Efficiency is the ration of a machine's useful work, in this case how much energy the water absorbed to get to its boiling point divided by the time it took to get to this point, and the total energy expended, in this case the kettles's power rating.
Answer: a. 0.75m (NH4)3PO4 will have the lowest freezing point .
Explanation: Freezing point decreases as the concentration of the solute substance increases. Assuming the same solvent for all of them, for instance water.
∆T= i.Kf.b
∆T= freezing point depression
i= vant Hoff factor
Kf= molality
Assuming water to be the solvent for all Kf=1.86°C/M
VANT HOFF FACTORS :
For (NH4)3PO4
This has 3 ionic bonding and 1 covalent bonding making it 4 bond
Therefore i=4
For CaSO4
This has 1 metallic bond and 1 covalent bond making it 2 bond.
Therefore i=2
For LiCl
This has 1 metallic bond and 1 non metallic bond making it 2 bond.
Therefore i=2
For CH3OH
This has only 1 covalent bond.
Therefore i=1
MOLALITY:
(NH4)3PO4 = 0.75M
CaSO4= 1.0M
LiCl= 1.0M
CH3OH= 1.5M
FREEZING POINT DEPRESSION:
For (NH4)3PO4
∆T= 4×0.75×1.86=5.58°C
For CaSO4
∆T= 2×1.0×1.86=3.72°C
For LiCl
∆T = 2×1.0×1.86= 3.72°C
For CH3OH
∆T= 1×1.5×1.86=2.79°C
REMEMBER THE HIGHER THE FREEZING POINT DEPRESSION THE LOWER THE FREEZING POINT.
FREEZING POINT DEPRESSION IS THE CHANGE IN THE FREEZING POINT PROPORTIONAL TO THE AMOUNT OF SOLUTE ADDED THE THE SOLUTION.
THEREFORE THE ONE WITH THE LOWEST FREEZING POINT IS (NH4)3PO4
Answer: Quora. What is the charge of the ion typically formed by bromine and how is it calculated? Bromine has seven valence electrons (found with a quick google search or the fact that it's a halogen or the fact that it's in group 17 or 7A) but wants eight, just like all atoms not in groups 1 and 2.
Explanation:
Answer:
Water volume produced is 7.3 mL
Explanation:
This the reaction:
4NH₃ (g) + 5O₂ (g) → 4NO (g) + 6H₂O (g)
We have to work with density, to solve this question
Density of ammonia = Ammonia mass / Ammonia volume
0,00073 g/mL = Ammonia mass / 6300 mL
(Notice, we had to convert 6.3L to mL)
0.00073 g/mL . 6300 mL = Ammonia mass → 4.599 g
Mass / Molar mass = Mol
4.599 g / 17g/m = 0.270 mole
Ratio is 4:6
4 mole of ammonia produce 6 mole of water
0.270 mole produce (0.270 .6)/4 = 0.405 mol
Molar mass . mole = mass
18 g/m . 0.405 m = 7.30 g
Water density = 1 g/mL
Water density = Water mass / Water Volume
1g/mL = 7.30 g / Water volume
Water volume = 7.3 mL