Answer:
When we have a rational function like:

The domain will be the set of all real numbers, such that the denominator is different than zero.
So the first step is to find the values of x such that the denominator (x^2 + 3) is equal to zero.
Then we need to solve:
x^2 + 3 = 0
x^2 = -3
x = √(-3)
This is the square root of a negative number, then this is a complex number.
This means that there is no real number such that x^2 + 3 is equal to zero, then if x can only be a real number, we will never have the denominator equal to zero, so the domain will be the set of all real numbers.
D: x ∈ R.
b) we want to find two different numbers x such that:
r(x) = 1/4
Then we need to solve:

We can multiply both sides by (x^2 + 3)


Now we can multiply both sides by 4:


Now we only need to solve the quadratic equation:
x^2 + 3 - 4*x - 4 = 0
x^2 - 4*x - 1 = 0
We can use the Bhaskara's formula to solve this, remember that for an equation like:
a*x^2 + b*x + c = 0
the solutions are:

here we have:
a = 1
b = -4
c = -1
Then in this case the solutions are:

x = (4 + 4.47)/2 = 4.235
x = (4 - 4.47)/2 = -0.235
Answer: 19,345lb
Step-by-step explanation: 365(53)
Answer:
20
Step-by-step explanation:
Total no = 75
N (P) = 48 , N (H) = 45 , N (T) = 58
N (P∩H) = 28 , N (H∩T) = 37 , N (P∩T) = 40
N (P∩H∩T) = 25
Total no = N (P) + N (H) + N (T) - N (P∩H) - N (H∩T) - N (P∩T) + N (P∩H∩T) + neither
75 = 48 + 45 + 58 - 28 - 37 - 40 + 25 + neither
75 = 71 + neither → neither = 4
N (only P) = N (P) - N (P∩H) - N (P∩T) + N (P∩H∩T) = 48 - 28 - 40 + 25 = 5
N (only H) = N (H) - N (P∩H) - N (H∩T) + N (P∩H∩T) = 45 - 28 - 37 + 25 = 5
N (only T) = N (T) - N (H∩T) - N (P∩T) + N (P∩H∩T) = 58 - 37 - 40 + 25 = 6
So, total liking either one or neither = 4 + 5 + 5 + 6 = 20