Answer:
$2337.54
Step-by-step explanation:
100%+6.3%=106.3%
106.3%=1.063
1.063×2199=2337.537
So when you round it the answer will be $2337.54.
Answer:
C. 
Step-by-step explanation:
You are given the exponential function 
From the table,
at
thus
![N(0)=a\cdot b^0\\ \\150=a\cdot 1\ [\text{ because }b^0=1]](https://tex.z-dn.net/?f=N%280%29%3Da%5Ccdot%20b%5E0%5C%5C%20%5C%5C150%3Da%5Ccdot%201%5C%20%5B%5Ctext%7B%20because%20%7Db%5E0%3D1%5D)
Also
at
thus

Since
substitute it into the second equation

and the expression for the exponential function is

Using Laplace transform we have:L(x')+7L(x) = 5L(cos(2t))sL(x)-x(0) + 7L(x) = 5s/(s^2+4)(s+7)L(x)- 4 = 5s/(s^2+4)(s+7)L(x) = (5s - 4s^2 -16)/(s^2+4)
=> L(x) = -(4s^2 - 5s +16)/(s^2+4)(s+7)
now the boring part, using partial fractions we separate 1/(s^2+4)(s+7) that is:(7-s)/[53(s^2+4)] + 1/53(s+7). So:
L(x)= (1/53)[(-28s^2+4s^3-4s^2+35s-5s^2+5s)/(s^2+4) + (-4s^2+5s-16)/(s+7)]L(x)= (1/53)[(4s^3 -37s^2 +40s)/(s^2+4) + (-4s^2+5s-16)/(s+7)]
denoting T:= L^(-1)and x= (4/53) T(s^3/(s^2+4)) - (37/53)T(s^2/(s^2+4)) +(40/53) T(s^2+4)-(4/53) T(s^2/s+7) +(5/53)T(s/s+7) - (16/53) T(1/s+7)