Answer: C. 6
Step-by-step explanation:
Given : Time taken by Machine R to do the job = 36 hours
Time taken by Machine S to do the job = 18 hours
Let x be the number of each type of machine to do the job.
Then , according to the question the required equation will be :-

Hence, the number of machines of type R were used =6
it would most likely be blue because its more
it would be a 57.1429%. of blue
Answer:
950
Step-by-step explanation:
The common difference is 4, so the general term can be written:
... an = 14 + 4(n -1)
The value of n for the last term is ...
... 86 = 14 + 4(n -1) . . . . . the computation for the last term, 86
... 72 = 4(n -1) . . . . . . . . . subtract 14
... 18 = n -1 . . . . . . . . . . . divide by 4
... 19 = n . . . . . . . . . . . . . add 1
Your series has 19 terms. The first term is 14 and the last is 86, so the average term is (14+86)/2 = 50. Since there are 19 terms, the sum of them is ...
... 19×50 = 950
Answer:
n=4
Step-by-step explanation:
Given equation: \[\frac{1}{n-4}-\frac{2}{n}=\frac{3}{4-n}\]
Simplifying the Left Hand Side of the equation by taking the LCM of the denominator terms:
\[\frac{n}{n*(n-4)}-\frac{2*(n-4)}{n*(n-4)}=\frac{3}{4-n}\]
=> \[\frac{n - 2*(n-4)}{n*(n-4)}=\frac{3}{4-n}\]
=> \[\frac{n - 2n + 8}{n*(n-4)}=\frac{3}{4-n}\]
=> \[\frac{8 - n}{n*(n-4)}=\frac{3}{4-n}\]
=> \[(8-n)*(4-n) =n*(n-4)*3\]
=> \[n-8 =3n\]
=> \[2n =8\]
=> n = 4