Answer:
can you translate to english
Step-by-step explanation:
I can't understand
The volume generated by rotating the given region
about OC is
<h3>
Washer method</h3>
Because the given region (
) has a look like a washer, we will apply the washer method to find the volume generated by rotating the given region about the specific line.
solution
We first find the value of x and y









![v= \pi \int\limits^2_o= [\frac{y^{2} }{4} - \frac{y^{8} }{2^{8} }} ] dy](https://tex.z-dn.net/?f=v%3D%20%5Cpi%20%5Cint%5Climits%5E2_o%3D%20%5B%5Cfrac%7By%5E%7B2%7D%20%7D%7B4%7D%20-%20%5Cfrac%7By%5E%7B8%7D%20%7D%7B2%5E%7B8%7D%20%7D%7D%20%20%5D%20dy)
![v= \pi [\int\limits^2_o {\frac{y^{2} }{4} } \, dy - \int\limits^2_o {\frac{y}{2^{8} } ^{8} } \, dy ]](https://tex.z-dn.net/?f=v%3D%20%5Cpi%20%5B%5Cint%5Climits%5E2_o%20%7B%5Cfrac%7By%5E%7B2%7D%20%7D%7B4%7D%20%7D%20%5C%2C%20dy%20-%20%5Cint%5Climits%5E2_o%20%7B%5Cfrac%7By%7D%7B2%5E%7B8%7D%20%7D%20%5E%7B8%7D%20%7D%20%5C%2C%20dy%20%5D)
![v=\pi [\frac{1}{4} \frac{y^{3} }{3} \int\limits^2_0 - \frac{1}{2^{8} } \frac{y^{g} }{g} \int\limits^2_o\\v= \pi [\frac{1}{12} (2^{3} -0)-\frac{1}{2^{8}*9 } (2^{g} -0)]\\v= \pi [\frac{2}{3} -\frac{2}{g} ]\\v= \frac{4}{g} \pi](https://tex.z-dn.net/?f=v%3D%5Cpi%20%5B%5Cfrac%7B1%7D%7B4%7D%20%5Cfrac%7By%5E%7B3%7D%20%7D%7B3%7D%20%20%5Cint%5Climits%5E2_0%20-%20%5Cfrac%7B1%7D%7B2%5E%7B8%7D%20%7D%20%20%5Cfrac%7By%5E%7Bg%7D%20%7D%7Bg%7D%20%5Cint%5Climits%5E2_o%5C%5Cv%3D%20%5Cpi%20%5B%5Cfrac%7B1%7D%7B12%7D%20%282%5E%7B3%7D%20-0%29-%5Cfrac%7B1%7D%7B2%5E%7B8%7D%2A9%20%7D%20%282%5E%7Bg%7D%20-0%29%5D%5C%5Cv%3D%20%5Cpi%20%5B%5Cfrac%7B2%7D%7B3%7D%20-%5Cfrac%7B2%7D%7Bg%7D%20%5D%5C%5Cv%3D%20%5Cfrac%7B4%7D%7Bg%7D%20%5Cpi)
A similar question about finding the volume generated by a given region is answered here: brainly.com/question/3455095
Answer:
The correct option is the graph on the bottom right whose screen grab is attached (please find)
Step-by-step explanation:
The information given are;
The required model height for the designed clothes should be less than or equal to 5 feet 10 inches
The equation for the variance in height is of the straight line form;
y = m·x + c
Where x is the height in inches
Given that the maximum height allowable is 70 inches, when x = 0 we have;
y = m·0 + c = 70
Therefore, c = 70
Also when the variance = 0 the maximum height should be 70 which gives the x and y-intercepts as 70 and 70 respectively such that m = 1
The equation becomes;
y ≤ x + 70
Also when x > 70, we have y ≤
-x + 70
with a slope of -1
To graph an inequality, we shade the area of interest which in this case of ≤ is on the lower side of the solid line and the graph that can be used to determine the possible variance levels that would result in an acceptable height is the bottom right inequality graph.
60 seconds in a minute
12 goes into 60, 5 times,
So 5 * 28 = 140
140 claps per minute
0.5 minute is 30 seconds, half a minute so divide by 2,
140/2 = 70
70 times every 0.5 minutes
Your answer: 2/3/2/9 = 0.037037037037037