The solution to the problem is as follows:
let
R = $619.15 periodic payment
i = 0.0676/12 the rate per month
n = 48 periods
S = the future value of an ordinary annuity
S = R[((1 + i)^n - 1)/i]
S = 619.15*[(1 + 0.0676/12)^48 - 1)/(0.0676/12)]
S = $34,015.99
I hope my answer has come to your help. God bless and have a nice day ahead!
If you go from point (-1, -3) to point (4, 4), you can find the slope of the line using the slope formula.
. So our slope is 7/5. The line goes through the y axis at -3/2, so putting that together we get an equation for the line that is
, choice D from above.
Answer:
12%
Step-by-step explanation:
Answer:
Step-by-step explanation:
Researchers measured the data speeds for a particular smartphone carrier at 50 airports.
The highest speed measured was 76.6 Mbps.
n= 50
X[bar]= 17.95
S= 23.39
a. What is the difference between the carrier's highest data speed and the mean of all 50 data speeds?
If the highest speed is 76.6 and the sample mean is 17.95, the difference is 76.6-17.95= 58.65 Mbps
b. How many standard deviations is that [the difference found in part (a)]?
To know how many standard deviations is the max value apart from the sample mean, you have to divide the difference between those two values by the standard deviation
Dif/S= 58.65/23.39= 2.507 ≅ 2.51 Standard deviations
c. Convert the carrier's highest data speed to a z score.
The value is X= 76.6
Using the formula Z= (X - μ)/ δ= (76.6 - 17.95)/ 23.39= 2.51
d. If we consider data speeds that convert to z scores between minus−2 and 2 to be neither significantly low nor significantly high, is the carrier's highest data speed significant?
The Z value corresponding to the highest data speed is 2.51, considerin that is greater than 2 you can assume that it is significant.
I hope it helps!