Problem 1
Draw a straight line and plot X anywhere on it.
Use your compass to trace out a circle with radius 1.5 cm. The circle intersects the line at two points. Let's make Y one of those points.
Also from point X, draw a circle of radius 2.5
This second circle will intersect another circle of radius 3.5 and this third circle is centered at point Z.
Check out the diagram below to see what I mean.
=====================================================
Problem 2
Draw a straight line and plot L anywhere on it.
Adjust your compass to 4 cm in width. Draw a circle around point L.
This circle crosses the line at two spots. Focus on one of those spots and call it M.
Draw another circle centered at point M. Keep the radius at 4 cm.
The two circles intersect at two points. Focus on one of the points and call it N.
The last step is to connect L, M and N to form the equilateral triangle.
See the image below.
=====================================================
Problem 3
I'm not sure how to do this using a compass and straightedge. I used GeoGebra to make the figure below instead. It's a free graphing and geometry program which is very useful. I used the same app to make the drawings for problem 1 and problem 2 earlier.
Given, a parking lot charges $3 for first hour and $2 per hour after that.
So for t hours, the parking lot charges $3 for the first hour and after first hour there is
hours left.
So for
hours it will charge $2 per hour.
The charges for
hours = $
.
Total charges for t hours for one car = $
Now for the second car, it will charge 75% of the first car.
So the charges for second car
=$[
]
=$
There are 3 cars. That parking charges for the third car is also 75% of the first car.
So for third car the parking charges are same as for the second car.
Total parking charges for 3 cars
= $
= $
We have got the required answer here.
The correct option is option C.
250/100 = 2.5
2.5*7 = 1.75
$1.75
Hope this helped!
Answer: there are three of the holidays
Step-by-step explanation:
The prime numbers through 31 include 2,3,5,7,11,13,17,19,23,29,31,and 37 so therefore three of the holidays (Martin Luther, Easter, and Thanksgiving) fall on days that are prime numbers
Answer: −x2−3x+4y+4z+5
Step-by-step explanation: terms are (positive or negative), a single variable ( a letter ), several variables multiplied but never added or subtracted.