Answer:
You didnt give any options, but I'm guessing one of them has a 3 in the tens digits, which should be the right answer.
Step-by-step explanation:
Not sure why such an old question is showing up on my feed...
Anyway, let

and

. Then we want to find the exact value of

.
Use the angle difference identity:

and right away we find

. By the Pythagorean theorem, we also find

. (Actually, this could potentially be negative, but let's assume all angles are in the first quadrant for convenience.)
Meanwhile, if

, then (by Pythagorean theorem)

, so

. And from this,

.
So,
Answer:
It is a many-to-one relation
Step-by-step explanation:
Given
See attachment for relation
Required
What type of function is it?
The relation can be represented as:
![\left[\begin{array}{c}y\\ \\10\\11\\4\\10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dy%5C%5C%20%5C%5C10%5C%5C11%5C%5C4%5C%5C10%5Cend%7Barray%7D%5Cright%5D)
Where
and 
Notice that the range has an occurrence of 10 (twice)
i.e.
and 
In function and relations, when two different values in the domain point to the same value in the range implies that, <em>the relation is many to one.</em>
Answer:
<u>4-0</u>
3-0
=4/3
<u>y-0</u> =4/3
x-0
3y-0=4x-0
3y=4x
y=4/3x
Step-by-step explanation: