Answer:
((2 x + 1) (4 x^2 - 2 x + 1))/8
Step-by-step explanation:
Factor the following:
x^3 + 1/8
Put each term in x^3 + 1/8 over the common denominator 8: x^3 + 1/8 = (8 x^3)/8 + 1/8:
(8 x^3)/8 + 1/8
(8 x^3)/8 + 1/8 = (8 x^3 + 1)/8:
(8 x^3 + 1)/8
8 x^3 + 1 = (2 x)^3 + 1^3:
((2 x)^3 + 1^3)/8
Factor the sum of two cubes. (2 x)^3 + 1^3 = (2 x + 1) ((2 x)^2 - 2 x + 1^2):
((2 x + 1) ((2 x)^2 - 2 x + 1^2))/8
1^2 = 1:
((2 x + 1) ((2 x)^2 - 2 x + 1))/8
Multiply each exponent in 2 x by 2:
((2 x + 1) (2^2 x^2 - 2 x + 1))/8
2^2 = 4:
Answer: ((2 x + 1) (4 x^2 - 2 x + 1))/8
It either word for or number form
The point where the lines intersect is the point that satisfies both equations.
It is (1, 5), selection C.
Use an online math calculator for more accurate answers just plug in the variables