Answer:
Front weels
Explanation:
Because they are the one which select the direction of the car.
Answer:
The number of particles in state E0 over the number of particles in state E1 will reduce
Explanation:
E0 represents the ground level state when all the particles have same energy level.
E1 represents excited state in which only a few particle reaches
E0 and E1 get further apart means that the energy difference between the two level increases.
Thus, the number of particles in state E0 over the number of particles in state E1 will reduce.
Jumping on a trampoline is a classic example of conservation of energy, from potential into kinetic. It also shows Hooke's laws and the spring constant. Furthermore, it verifies and illustrates each of Newton's three laws of motion.
<u>Explanation</u>
When we jump on a trampoline, our body has kinetic energy that changes over time. Our kinetic energy is greatest, just before we hit the trampoline on the way down and when you leave the trampoline surface on the way up. Our kinetic energy is 0 when you reach the height of your jump and begin to descend and when are on the trampoline, about to propel upwards.
Potential energy changes along with kinetic energy. At any time, your total energy is equal to your potential energy plus your kinetic energy. As we go up, the kinetic energy converts into potential energy.
Hooke's law is another form of potential energy. Just as the trampoline is about to propel us up, your kinetic energy is 0 but your potential energy is maximized, even though we are at a minimum height. This is because our potential energy is related to the spring constant and Hooke's Law.
The answer is D. 32 m.
The simple equation that connects speed (v), time (t), and distance (d) can be expressed as:

⇒

It is given:

t = 10 s
d = ?
So:
The combined amount of kinetic and potential energy of its molecules