2 = x. 7 = y
2 = 1/3 * 7 -1/3
1/3 * 7 to get 7/3
2 = 7/3 - 1/3 to get 6/3
Divide both sides by 2
2 = 2
Sorry if my math is wrong
9514 1404 393
Answer:
$20.01
Step-by-step explanation:
In 2004–2012, the interest rate is 0.002%. In 2013, it is 0.004%. In 2014–2021, the interest rate is 0.002%. That is, in the 18 years between 2004 and 2021 (inclusive), the interest rate is 0.002% for 17 of them. The effective account multiplier is ...
(1.00002^17)(1.00004^1) = 1.00038006801
Then the account balance is ...
$20 × 1.00038006801 ≈ $20.01
_____
<em>Additional comment</em>
The annual interest earned on $20.00 is $0.0004. If the account balance is rounded to the nearest cent annually, at the end of the 18 years, the balance will still be $20.00. Not enough interest is earned in one year to increase the balance above $20. At the end of the 18 years, the amount of interest earned is 0.76¢ (a fraction of a penny) <em>only if there is no rounding in intervening years</em>.
The differences between he numbers are 19, so the answer is 58 + 19 = 71
First do ,60 divided by 7 =_____. Then do The product of that equation divided by 8. Then ur answer to that equation is a factor for the last equation u have to do witch is The product of ______ divided by 8, Then multiple that product by 3 like this (3❌_______=_______) then u have ur answer. Hope u understand more now that I've helped
Answer:
The volume of the figure is 590.71 mm³
Step-by-step explanation:
To solve this problem we have to find the volume of the cylinder and the volume of the rectangular prism and add them
To calculate the volume of a cylinder we have to use the following formula:
v = volume
h = height = 3.65mm
π = 3.14
r = radius = 3.2mm
v = (π * r²) * h
we replace the unknowns with the values we know
v = (3.14 * (3.2mm)²) * 3.65mm
v = (3.14 * 10.24mm²) * 3.65mm
v = 32.1536² * 3.65mm
v = 117.36mm³
To calculate the volume of a rectangular prism we have to use the following formula:
v = volume
w = width = 14.23mm
l = length = 10.08mm
h = height = 3.3mm
v = w * h * l
we replace the values that we know
v = 14.23mm * 10.08mm * 3.3mm
v = 473.347mm³
we add the volumes
v = 117.36mm³ + 473.347mm³
v = 590.707
round to the neares hundredth
v = 590.707 mm³ = 590.71 mm³
The volume of the figure is 590.71 mm³