If I understood the question correctly, the answer would be 400
<span> first, write the equation of the parabola in the required form: </span>
<span>(y - k) = a·(x - h)² </span>
<span>Here, (h, k) is given as (-1, -16). </span>
<span>So you have: </span>
<span>(y + 16) = a · (x + 1)² </span>
<span>Unfortunately, a is not given. However, you do know one additional point on the parabola: (0, -15): </span>
<span>-15 + 16 = a· (0 + 1)² </span>
<span>.·. a = 1 </span>
<span>.·. the equation of the parabola in vertex form is </span>
<span>y + 16 = (x + 1)² </span>
<span>The x-intercepts are the values of x that make y = 0. So, let y = 0: </span>
<span>0 + 16 = (x + 1)² </span>
<span>16 = (x + 1)² </span>
<span>We are trying to solve for x, so take the square root of both sides - but be CAREFUL! </span>
<span>± 4 = x + 1 ...... remember both the positive and negative roots of 16...... </span>
<span>Solving for x: </span>
<span>x = -1 + 4, x = -1 - 4 </span>
<span>x = 3, x = -5. </span>
<span>Or, if you prefer, (3, 0), (-5, 0). </span>
Start with the largest possible of 9 per vase. 36 by 9 is 4 vases. The next highest possible is 6 per vase, 36 by 6 is 6 vases.etc.
These array of numbers shown above are called matrices. These are rectangular arrays of number that are arranged in columns and rows. It is mostly useful in solving a system of linear equations. For example, you have these equations
x+3y=5
2x+y=1
x+y=10
In matrix form that would be
![\left[\begin{array}{ccc}1&3&5\\2&1&1\\1&1&10\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%263%265%5C%5C2%261%261%5C%5C1%261%2610%5Cend%7Barray%7D%5Cright%5D%20)
where the first column are the coefficients of x, the second column the coefficients of y and the third column is the constants, When you multiple matrices, just multiply the same number on the same column number and the same row number. For this problem, the solution is
Answer:
yaaa
Step-by-step explanation: