Answer:
I thinck it would be 48.0
Answer:10842.33m/s
Explanation:
F=qvBsine
V=f/(qBsine)
V=(3.5×10^-2)÷(8.4×10^-4×6.7×10^-3×sin35)
V=10842.33m/s

The most effective forces on the object are the backward force of air resistance relatively very small in magnitude, and the force of gravity. Because the spiral path of the satellite is not perpendicular to the gravitational force, one element of the gravitational force pulls forward. at the satellite to do fantastic work & make its speed increase.
<h3>What is called gravitational force?</h3>
Gravity, additionally referred to as gravitation, is a force that exists amongst all material gadgets withinside the universe. For any objects or particles having nonzero mass, the force of gravity tends to draw them in the direction of each other. Gravity operates on objects of all sizes, from subatomic particles to clusters of galaxies.
To learn more about gravitational force, visit;
brainly.com/question/9266911
#SPJ4
Answer:
Constructive interference
Explanation:
Answer:
The ball's initial kinetic energy
The ball comes to a stop at B. At this point its initial kinetic energy is converted into potential energy
Explanation:
A ball is fixed to the end of a string, which is attached to the ceiling at point P. As the drawing shows, the ball is projected downward at A with the launch speed v0. Traveling on a circular path, the ball comes to a halt at point B. What enables the ball to reach point B, which is above point A? Ignore friction and air resistance.
From conservation of energy which states that energy can neither be created nor be destroyed, but can be transformed from one form to another.
Ki+Ui=Kf+Uf
Ki=initial kinetic energy
Ui=initial potential energy
Kf=final kinetic energy
Uf=final potential energy
we know that 
m=mass of the ball
ha=downward height a
hb=upward height b
u=initial velocity u
v=final velocity v, which is 0
g=acceleration due to gravity
v=0 at final velocity
1/2mu^2+mgha=0+1/2mv^2
ha=hb+Ki/mh
From the above equation, we can conclude that the ball's initial kinetic energy is responsible for making the ball reach point B.
Point B is higher than point A from the motion gained by the ball