Answer:

Explanation:
We were told to calculate the speed of the ball,
Given speed of sound as 340 m
And we know that the sound of the ball hitting the pins is at 2.80 s after the ball is released from his hands.
Speed of ball = distance traveled/(time of hearing - time the sound travels).
Speed= S/t
Where S= distance traveled
t= time of hearing - time the sound travels
time=time for ball to roll+timefor sound to come back.
time of sound=16.5/340
=0.048529secs
solving for speedof ball
Then,Speed of ball = distance traveled/(time of hearing - time the sound travels).
=16.5/(2.80-0.048529) m/s = 5.997m/s
Therefore, the speed of the ball is
5.997m/s
Answer:
a) 
b) 
c) 
d)
or 18.3 cm
Explanation:
For this case we have the following system with the forces on the figure attached.
We know that the spring compresses a total distance of x=0.10 m
Part a
The gravitational force is defined as mg so on this case the work donde by the gravity is:

Part b
For this case first we can convert the spring constant to N/m like this:

And the work donde by the spring on this case is given by:

Part c
We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:

And if we solve for the initial velocity we got:

Part d
Let d1 represent the new maximum distance, in order to find it we know that :

And replacing we got:

And we can put the terms like this:

If we multiply all the equation by 2 we got:

Now we can replace the values and we got:


And solving the quadratic equation we got that the solution for
or 18.3 cm because the negative solution not make sense.
Answer:
a). Single replacement.
Explanation:
Because one element replaces another element in a compound
-GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Given
A particle of mass m moving under the influence of a fixed mass's M, gravitational potential energy of formula -GMm/r, where r is the separation between the masses and G is the gravitational constant of the universe.
As the Gravity Potential energy of particle = -GMm/r
Total energy of particle = Kinetic energy + Potential Energy
As we know that
Kinetic energy = 1/2mv²
Also, v is equals to square root of GM/r
v = √GM/r
Put the value of v in the formula of kinetic energy
We get,
Kinetic Energy = GMm/2r
Total Energy = GMm/2r + (-GMm/r)
= GMm/2r - GMm/r
= -GMm/2r
Hence, -GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Learn more about Gravitational Potential Energy here brainly.com/question/15896499
#SPJ4
The energy of photon in kJ/mol is 329kJ/mol.
Wavelength of radiation is 370nm. The frequency of given wavelength is
ν = c / λ
ν = 3×10^8 / 370×10^-9
ν = 8.11 × 10^14 s^-1
Now the energy of photon is:
E = hν
E = 6.63×10^-34 J.s/photon × 8.11×10^14s^-1
E = 5.41× 10^-19 J/photon
To find in mole
E = 5.41× 10^-19 × 6.022×10^23
E = 3.29 ×10^ 5 J/mol
So, the energy of mole of photon is equal to 329 kJ/mol.
Learn more about radiation here:
brainly.com/question/18650102
#SPJ4