<span>According to Newton's first law of motion:
-- objects at rest will remain at rest unless acted upon by an outside force
-- objects in motion will remain in motion unless acted upon by an outside force
</span>
Answer:
162500000.
Explanation:
Given that
Diameter of the wire , d= 1.8 mm
The length of the wire ,L = 15 cm
Current ,I = 260 m A
The charge on the electron ,e= 1.6 x 10⁻¹⁹ C
We know that Current I is given as

I=Current
q=Charge
t=time
q= I t
q= 260 m t
The total number of electron = n
q= n e

n=162500000 t

The number of electron passe per second will be 162500000.
Hi there!
Recall the equation for centripetal force:

We can rearrange the equation to solve for 'r'.
Multiply both sides by r:

Divide both sides by Fc:

In order to solve the problem, it is necessary to apply the concepts related to the conservation of momentum, especially when there is an impact or the throwing of an object.
The equation that defines the linear moment is given by

where,
m=Total mass
Mass of Object
Velocity before throwing
Final Velocity
Velocity of Object
Our values are:

Solving to find the final speed, after throwing the object we have

We have three objects. For each object a launch is made so the final mass (denominator) will begin to be subtracted successively. In addition, during each new launch the initial speed will be given for each object thrown again.
That way during each section the equations should be modified depending on the previous one, let's start:
A) 



B) 



C) 



Therefore the final velocity of astronaut is 3.63m/s
Answer:
The distance covered by puck A before collision is 
Explanation:
From the question we are told that
The label on the two hockey pucks is A and B
The distance between the two hockey pucks is D 18.0 m
The speed of puck A is 
The speed of puck B is 
The distance covered by puck A is mathematically represented as

=> 
The distance covered by puck B is mathematically represented as

=> 
Since the time take before collision is the same

substituting values

=> 
=> 