66/55 in simplest form is 6/5. Because...
66÷ 11= 6
55÷ 11= 5
Answer:
S=49
Step-by-step explanation:
Any triangle has an interior angle of 180.
So just add them up and set the sum equal to 180 degrees.
2s+s+33=180
3s=180-33
3s=147 . Divide both sides by 3 to isolate variable s
s=49
Answer:
search-icon-image
Class 9
>>Maths
>>Quadrilaterals
>>Quadrilaterals and Their Various Types
>>In Fig. 6.43, if PQ PS, PQ∥ SR, SQR = 2
Question
Bookmark
In Fig. 6.43, if PQ⊥PS,PQ∥SR,∠SQR=28
0
and ∠QRT=65
0
, then find the values of x and y.
463685
expand
Medium
Solution
verified
Verified by Toppr
Given, PQ⊥PS,PQ∥SR,∠SQR=28
∘
,∠QRT=65
∘
According to the question,
x+∠SQR=∠QRT (Alternate angles as QR is transversal.)
⇒x+28
∘
=65
∘
⇒x=37
∘
Also ∠QSR=x
⇒∠QSR=37
∘
Also ∠QRS+∠QRT=180
∘
(Linear pair)
⇒∠QRS+65
∘
=180
∘
⇒∠QRS=115
∘
Now, ∠P+∠Q+∠R+∠S=360
∘
(Sum of the angles in a quadrilateral.)
⇒90
∘
+65
∘
+115
∘
+∠S=360
∘
⇒270
∘
+y+∠QSR=360
∘
⇒270
∘
+y+37
∘
=360
∘
⇒307
∘
+y=360
∘
⇒y=53
∘
Step-by-step explanation:
please mark me as brainlist please
Answer:
r = 16, q = 16√2
Step-by-step explanation:
This is a 45° 45° 90° triangle. In this type of triangle, the legs of said shape will be equal and the hypotenuse will be the leg length multiplied by √2.
Therefore, r = 16 and q = 16√2.
Part A
Answers:
Mean = 5.7
Standard Deviation = 0.046
-----------------------
The mean is given to us, which was 5.7, so there's no need to do any work there.
To get the standard deviation of the sample distribution, we divide the given standard deviation s = 0.26 by the square root of the sample size n = 32
So, we get s/sqrt(n) = 0.26/sqrt(32) = 0.0459619 which rounds to 0.046
================================================
Part B
The 95% confidence interval is roughly (3.73, 7.67)
The margin of error expression is z*s/sqrt(n)
The interpretation is that if we generated 100 confidence intervals, then roughly 95% of them will have the mean between 3.73 and 7.67
-----------------------
At 95% confidence, the critical value is z = 1.96 approximately
ME = margin of error
ME = z*s/sqrt(n)
ME = 1.96*5.7/sqrt(32)
ME = 1.974949
The margin of error is roughly 1.974949
The lower and upper boundaries (L and U respectively) are:
L = xbar-ME
L = 5.7-1.974949
L = 3.725051
L = 3.73
and
U = xbar+ME
U = 5.7+1.974949
U = 7.674949
U = 7.67
================================================
Part C
Confidence interval is (5.99, 6.21)
Margin of Error expression is z*s/sqrt(n)
If we generate 100 intervals, then roughly 95 of them will have the mean between 5.99 and 6.21. We are 95% confident that the mean is between those values.
-----------------------
At 95% confidence, the critical value is z = 1.96 approximately
ME = margin of error
ME = z*s/sqrt(n)
ME = 1.96*0.34/sqrt(34)
ME = 0.114286657
The margin of error is roughly 0.114286657
L = lower limit
L = xbar-ME
L = 6.1-0.114286657
L = 5.985713343
L = 5.99
U = upper limit
U = xbar+ME
U = 6.1+0.114286657
U = 6.214286657
U = 6.21