1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lapo4ka [179]
3 years ago
9

6.) *

Mathematics
1 answer:
labwork [276]3 years ago
8 0

Answer:

the common difference is 5.4 and yes, this is an arithmetic sequence

Step-by-step explanation:

Each new term is derived by adding 5.4 to the previous term:

2.1 + 5.4 = 7.5,

7.5 + 5.4 = 12.9,

and so on,

so the common difference is 5.4 and yes, this is an arithmetic sequence.

You might be interested in
The translation shown in the graph moves the figure to the right. What kind of translation is shown?
Elena-2011 [213]

the figure go to the left

6 0
3 years ago
2067 Supp Q.No. 2a Find the sum of all the natural numbers between 1 and 100 which are divisible by 5. Ans: 1050 ​
Alborosie

5

Answer:

1050

Step-by-step explanation:

Natural Numbers are positive whole numbers. They aren't negative, decimals, fractions. We can just divide 5 into 100 to find how many natural numbers go up to 100 and just add them but that is just to much.

There is a easier method.

<em>E.g</em><em>:</em><em> </em><em> </em><em>Natural</em><em> </em><em>N</em><em>umbers</em><em> </em><em>that</em><em> </em><em>are</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>a</em><em> </em><em>N</em><em>t</em><em>h</em><em> </em><em>Number</em><em>.</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>as</em><em> </em><em>adding</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>Nth</em><em> </em><em>Numbers</em><em> </em><em> </em><em>to a</em><em> </em><em>multiple</em><em> </em><em>of</em><em> </em><em>that</em><em> </em><em>Nth</em><em> </em><em>Term</em><em>.</em><em> </em><em>For</em><em> </em><em>example</em><em>,</em><em> </em><em>let</em><em> </em><em>say</em><em> </em><em>we</em><em> </em><em>need</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>numbers</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>2</em><em>.</em><em> </em><em>We</em><em> </em><em>know</em><em> </em><em>that</em><em> </em><em>4</em><em> </em><em>is</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>2</em><em> </em><em>because</em><em> </em><em>4</em><em>/</em><em>2</em><em>=</em><em>2</em><em>.</em><em> </em><em> </em><em>We</em><em> </em><em>can</em><em> </em><em>add</em><em> </em><em>the</em><em> </em><em>Nth</em><em> </em><em>numbers</em><em> </em><em>which</em><em> </em><em>is</em><em> </em><em>2</em><em> </em><em>to</em><em> </em><em>4</em><em>.</em><em> </em><em>4</em><em>+</em><em>2</em><em>=</em><em>6</em><em>.</em><em> </em><em>And</em><em> </em><em>6</em><em> </em><em>is</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>2</em><em> </em><em>because</em><em> </em><em>6</em><em>/</em><em>2</em><em>=</em><em>3</em><em>.</em><em> </em><em>We</em><em> </em><em>can</em><em> </em><em>call</em><em> </em><em>this</em><em> </em><em>a</em><em> </em><em>arithmetic</em><em> </em><em>series</em><em>.</em><em> </em><em>A</em><em> </em><em>series</em><em> </em><em>which</em><em> </em><em>has</em><em> </em><em>a</em><em> </em><em>pattern</em><em> </em><em>of</em><em> </em><em>adding</em><em> </em><em>a</em><em> </em><em>common</em><em> </em><em>difference</em>

<em>Back</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>problem</em><em>,</em><em> </em><em>we</em><em> </em><em>can</em><em> </em><em>use</em><em> </em><em>the</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>arithmetic</em><em> </em><em>series</em><em> </em><em>formula</em><em>,</em>

<em>y = x( \frac{z {}^{1}  +  {z}^{n} }{2} )</em>

<em>Where</em><em> </em><em>x</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>number</em><em> </em><em>of</em><em> </em><em>terms</em><em> </em><em>in</em><em> </em><em> </em><em>our</em><em> </em><em>sequence</em><em>.</em><em> </em><em>Z1</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>fist</em><em> </em><em>term</em><em> </em><em>of</em><em> </em><em>our</em><em> </em><em>series</em><em>.</em><em> </em><em> </em><em>ZN</em><em> </em><em>is</em><em> </em><em>our</em><em> </em><em>last</em><em> </em><em>term</em><em>.</em><em> </em><em>And</em><em> </em><em>y</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>all</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>terms</em><em> </em>

<em>The</em><em> </em><em>first</em><em> </em><em>term</em><em> </em><em>is</em><em> </em><em>5</em><em>,</em><em> </em><em>the</em><em> </em><em>numbers</em><em> </em><em>of</em><em> </em><em>terms</em><em> </em><em>being</em><em> </em><em>added</em><em> </em><em>is</em><em> </em><em>2</em><em>0</em><em> </em><em>because</em><em> </em><em>1</em><em>0</em><em>0</em><em>/</em><em>5</em><em>=</em><em>2</em><em>0</em><em>.</em><em> </em><em>The</em><em> </em><em>last</em><em> </em><em>term</em><em> </em><em>is</em><em> </em><em>1</em><em>0</em><em>0</em><em>.</em>

<em>y = 20( \frac{5 + 100}{2} )</em>

<em>y = 20( \frac{105}{2} )</em>

<em>y = 1050</em>

5 0
3 years ago
Does any one live in/by utah
erma4kov [3.2K]
What, huh? Oh wait what.
4 0
3 years ago
Read 2 more answers
Solve for the value of X as you should solve for X and explain.
Varvara68 [4.7K]

Answer:

12cos59, about 6.18

Step-by-step explanation:

cos59 = x/12

(adjacent/hypotenuse)

x = 12cos59

plugging this into a calculator gets you about 6.18

6 0
3 years ago
The Learning Center charges a one-time fee of $26 plus $10 per piano lesson. Guitar lessons have a one-time fee of $36 plus $8 f
Aleksandr [31]

Given :

The Learning Center charges a one-time fee of $26 plus $10 per piano lesson.

Guitar lessons have a one-time fee of $36 plus $8 for each lesson.

To Find :

After how many lessons will the cost of learning to play piano be the same or more than learning to play guitar.

Solution :

Mathematical expression of piano lesson :

P_1=26+10x

Mathematical expression of guitar lesson :

P_2=36+8y

( Here, x and y are number of lessons )

Let, after t hours cost of learning to play piano be the same or more than learning to play guitar.

Now, given constraint :

P_1 \geq P_2\\\\26+10t \geq 36+8t\\\\2t \geq  10\\\\t\geq 5

Hence, this is the required solution.

6 0
3 years ago
Other questions:
  • Figure below shows two triangles EFG and KLM​
    14·1 answer
  • 2) On average, 75% of the planes leave on time. If 120 planes left on time
    10·1 answer
  • Someone please help me with this
    8·1 answer
  • If the polynomial x5 − 105 can be split as the product of the polynomials x − 10 and a, what is a? x4 − 99,990 x4 + 10x3 + 100x2
    15·2 answers
  • The table below represents a linear function f(x) and the equation represents a function g(x):
    6·1 answer
  • 6338 divided by 43 with remainder
    13·2 answers
  • Annette wants to find out which of two toothpaste brands people living in the town of Springville prefer, brand A or brand B. Sh
    6·1 answer
  • Review the properties of exponents. In complete sentences, explain the process necessary to simplify the exponential expression.
    15·1 answer
  • What is the y-intercept?<br> (20,0)<br> 0 (0, 18)<br> (18,0)<br> O (0,20)
    12·1 answer
  • -7+(-3) SHOW WORK PLEASE HURRY
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!