1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
const2013 [10]
3 years ago
9

HELP WITH MATH!! RLLY COULD USE IT

Mathematics
2 answers:
san4es73 [151]3 years ago
7 0

Answer:

120 square units

Step-by-step explanation:To find the area you do length times hight or l x h. If you want you can also make the triangle and move it to the other side to create a square if thats helps :) but you always do LxH for area :)

Alborosie3 years ago
7 0

Answer:

120

Step-by-step explanation:

Since it's a parallelogram, it has to be A = BH.

Base in this problem: 10

Height in this problem: 12

10x12=120

You might be interested in
F(x)=3^x+2 domain and range
Irina-Kira [14]

Answer:

domain: (-∞  ,∞)

range: (2,∞ )

Step-by-step explanation:

6 0
3 years ago
Solve for x in the following triangle.​
Pavlova-9 [17]

Answer:

x = 12

Step-by-step explanation:

The exterior angle of a triangle is equal to the sum of the 2 opposite interior angles.

8 + 6x is an exterior angle of the triangle, thus

8 + 6x = 30 + 4x + 2 = 4x + 32 ( subtract 4x from both sides )

8 + 2x = 32 ( subtract 8 from both sides )

2x = 24 ( divide both sides by 2 )

x = 12

3 0
3 years ago
Use the form of the definition of the integral given in the theorem to evaluate the integral. ∫ 0 − 2 ( 7 x 2 + 7 x ) d x
Murrr4er [49]

Answer:

\int _{-2}^07x^2+7xdx=\frac{14}{3}

Step-by-step explanation:

The definite integral of a continuous function <em>f</em> over the interval [a,b] denoted by \int\limits^b_a {f(x)} \, dx, is the limit of a Riemann sum as the number of subdivisions approaches infinity. That is,

\int\limits^b_a {f(x)} \, dx=\lim_{n \to \infty} \sum_{i=1}^{n}\Delta x \cdot f(x_i)

where \Delta x = \frac{b-a}{n} and x_i=a+\Delta x\cdot i

To evaluate the integral

\int\limits^{0}_{-2} {7x^{2}+7x } \, dx

you must:

Find \Delta x

\Delta x = \frac{b-a}{n}=\frac{0+2}{n}=\frac{2}{n}

Find x_i

x_i=a+\Delta x\cdot i\\x_i=-2+\frac{2i}{n}

Therefore,

\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} f(-2+\frac{2i}{n})

\int\limits^{0}_{-2} {7x^{2}+7x } \, dx=\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7(-2+\frac{2i}{n})^{2} +7(-2+\frac{2i}{n})

\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7(-2+\frac{2i}{n})^{2} +7(-2+\frac{2i}{n})\\\\\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7[(-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})]\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} (-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} (-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} 4-\frac{8i}{n}+\frac{4i^2}{n^2} -2+\frac{2i}{n}\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} \frac{4i^2}{n^2}-\frac{6i}{n}+2

\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} \frac{4i^2}{n^2}-\frac{6i}{n}+2\\\\\lim_{n \to \infty}\frac{14}{n}[ \sum_{i=1}^{n} \frac{4i^2}{n^2}-\sum_{i=1}^{n}\frac{6i}{n}+\sum_{i=1}^{n}2]\\\\\lim_{n \to \infty}\frac{14}{n}[ \frac{4}{n^2}\sum_{i=1}^{n}i^2 -\frac{6}{n}\sum_{i=1}^{n}i+\sum_{i=1}^{n}2]

We can use the facts that

\sum_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6}

\sum_{i=1}^{n}i=\frac{n(n+1)}{2}

\lim_{n \to \infty}\frac{14}{n}[ \frac{4}{n^2}\cdot \frac{n(n+1)(2n+1)}{6}-\frac{6}{n}\cdot  \frac{n(n+1)}{2}+2n]\\\\\lim_{n \to \infty}\frac{14}{n}[-n+\frac{2\left(n+1\right)\left(2n+1\right)}{3n}-3]\\\\\lim_{n \to \infty}\frac{14\left(n^2-3n+2\right)}{3n^2}

\frac{14}{3}\cdot \lim _{n\to \infty \:}\left(\frac{n^2-3n+2}{n^2}\right)\\\\\mathrm{Divide\:by\:highest\:denominator\:power:}\:1-\frac{3}{n}+\frac{2}{n^2}\\\\\frac{14}{3}\cdot \lim _{n\to \infty \:}\left(1-\frac{3}{n}+\frac{2}{n^2}\right)\\\\\frac{14}{3}\left(\lim _{n\to \infty \:}\left(1\right)-\lim _{n\to \infty \:}\left(\frac{3}{n}\right)+\lim _{n\to \infty \:}\left(\frac{2}{n^2}\right)\right)\\\\\frac{14}{3}\left(1-0+0\right)\\\\\frac{14}{3}

Thus,

\int _{-2}^07x^2+7xdx=\frac{14}{3}

5 0
4 years ago
Mei and Anju are sitting next to each other on different horses on a carousel. Mei's horse is 3 meters from the center of the
SOVA2 [1]

Answer:

2\pi \approx 6.28\ meters

Step-by-step explanation:

Mei's horse is 3 meters from the center of the carousel. After one rotation, Mei travelled

l_M=2\pi r=2\pi \cdot 3=6\pi\ meters

Anju's horse is 2 meters from the center. After one rotation, Mei travelled

l_A=2\pi r=2\pi \cdot 2=4\pi\ meters

The difference in their travelled distances is

l_M-l_A=6\pi -4\pi =2\pi \approx 6.28\ meters

5 0
4 years ago
Read 2 more answers
Consider this equation: 2x + 2 = 11 - x
77julia77 [94]
Addition bc. you need adding to both sides x and will get this result of 3x+2 = 11

hope helped 
4 0
4 years ago
Read 2 more answers
Other questions:
  • summer has an offer to buy an item with a sticker price of $13200 by paying $460 a month for 36 months. What interest rate is su
    6·2 answers
  • I am not 100% sure on this one on this one
    9·2 answers
  • Reducing fraction 9/36
    8·2 answers
  • Law of Sines
    13·1 answer
  • Given: ∠JOH = 27° and arc NML = 98°. Find the measure of arc JH.
    11·1 answer
  • 201.3 Divide by 1 .83
    15·2 answers
  • If At = -A then A is said to be
    11·1 answer
  • Helppppp!!!
    10·2 answers
  • Which is a solution to the equation
    9·1 answer
  • There are 60 people waiting for a river raft ride. Each raft holds
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!