Answer:
1. The facts are;
= 95 days
s₁ = 32 days
n₁ = 18 SUV's
= 48 days
n₂ = 38 small cars
s₂ = 24 days
The confidence level = 95%
The confidence interval is (29.55, 64.45)
Step-by-step explanation:
The facts of the problem are;
The number of SUV's he sold, n₁ = 18 SUV's
The average number it took to sell the 18 SUV's,
= 95 days
The standard deviation of the time it took to sell the 18 SUV's, s₁ = 32 days
The number of small cars he sold, n₂ = 38 small cars
The average number it took to sell the 38 small cars,
= 48 days
The standard deviation of the time it took to sell the 38 small cars, s₂ = 24 days
The 95% confidence interval is given as follows;
Using a graphing calculator, we get, the critical-t,
= 2.055529


We get C.I. = 29.55259 < μ₁ - μ₂ < 64.44741
∴ C.I. ≈ 29.55 < μ₁ - μ₂ < 64.45