Well, if u had a spilled liquid in there (we'll simply go with water) and you had the freezer at a cold temperature it would change (like,icycles on trees when it's snowing)
Wavelength is 6.976 x 10^ -35 m
Explanation:
In this, we can use De Broglie’s equation. This equation is the relationship between De Broglie’s wavelength, velocity and the mass of a moving object. In this equation, we are using plank's constant which is 6.626 x 10^-34 m^2 kg/s.
We know that one mile per hour is equivalent to 0.447 M/S.
And One gram is equivalent to 10^-3 kg.
De Broglie’s wavelength = λ ( wave length) = Plank’s constant/ Mass x velocity
λ ( wave length) = 6.626 x 10^ -34/ (425 x10^-3) x ( 50 x 0.447)
= 6.626 x 10^ -34/ 0. 425 x 22.35
= 6.626 x 10^ -34/ 9.498
= 6.976 x10^ -35 m
So, the wavelength of the football will be 6.976 x 10^ -35 m
Answer:
C. Lose three electrons to have a full outer shell
Explanation:
Al is in Group 13 of the Periodic Table, so it has three valence electrons.
It must either lose three electrons or gain five to achieve a stable octet.
It is easier to lose three electrons than it is to gain five, so Al loses three electrons.
D. is wrong, for the same reason.
A. is wrong. If Al lost three electrons, it would be breaking into a stable inner shell.
C. is wrong. Al is a metal, so it will lose electrons in a reaction.
Answer:
1.1 × 10²⁴ atoms Mg
General Formulas and Concepts:
<u>Atomic Structure</u>
- Moles
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
<em>Identify</em>
[Given] 1.8 mol Mg
[Solve] atoms Mg
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- [DA] Set up:
- [DA] Multiply [Cancel out units]:
<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
1.08396 × 10²⁴ atoms Mg ≈ 1.1 × 10²⁴ atoms Mg
We have mass. Anything that generally includes atoms is matter