Colloids is the correct answer
Answer:
The correct answer is <em>d. The nucleoside triphosphates have the sugar deoxyribose; ATP has the sugar ribose.</em>
Explanation:
The nucleoside triphosphates are components of DNA (deoxyribonucleic acid) so they are composed by a nitrogenous base (adenine, guanine, thymine or cytosine) and a deoxyribose sugar. In contraposition, ATP (adenosine triphosphate) is composed by the nitrogenous base adenine and a ribose sugar along with three phosphates groups. Unlike ribose, deoxyribose is a 5-carbon sugar which lack of an oxygen atom in C2 position.
Answer:
330.95K
Explanation:
V₁ = 1.2L
T₁ = 25°C = (25 + 273.15)K = 298.15K
P₁ = 1.0 atm
P₂ = 0.74 atm
V₂ = 1.8L
T₂ =?
From combined gas equation,
(P₁ * V₁) / T₁ = (P₂ * V₂) / T₂
Solve for T₂
T₂ = (P₂ * V₂ * T₁) / (P₁ * V₁)
T₂ = (0.74 * 1.8 * 298.15) / (1.0 * 1.2)
T₂ = 397.1358 / 1.2
T₂ = 330.9465K
T₂ = 330.95K or T₂ = (330.95 - 273.15)°C = 57.8°C
Answer:
metal calcium or (Ca).
Explanation:
For example, the metal calcium (Ca) and the nonmetal chlorine (Cl) form the ionic compound calcium chloride (CaCl2). In this compound, there are two negative chloride ions for each positive calcium ion
Answer:
We'll have 8.0 moles Fe3O4 and 4.0 moles CO2
Explanation:
Step 1: data given
Number of moles Fe2O3 = 12.0 moles
Number of moles CO = 12.0 moles
Step 2: The balanced equation
3Fe2O3 +CO → 2Fe3O4 + CO2
Step 3: Calculate the limiting reactant
For 3 moles Fe2O3 we need 1 mol CO to produce 2 moles Fe3O4 and 1 mol CO2
Fe2O3 is the limiting reactant. It will completely be consumed (12.0 moles).
CO is in excess. There will react 12.0 / 3 = 4.0 moles
There will remain 12.0 - 4.0 = 8.0 moles
Step 4: Calculate moles products
For 3 moles Fe2O3 we need 1 mol CO to produce 2 moles Fe3O4 and 1 mol CO2
For 12.0 moles Fe2O3 we'll have 2/3 * 12.0 = 8.0 moles Fe3O4
For 12.0 moles Fe2O3 we'll have 12.0 / 3 = 4.0 moles CO2
We'll have 8.0 moles Fe3O4 and 4.0 moles CO2