The correct answer is C. An example of measurement bias in scientific
measurement, of the available answers, would be a balance that always
reads 0.1g. The other possible answers are all examples of devices or
measurement techniques that would help a scientist to avoid measurement
bias, rather than contributing to it.
Answer is: volume of CO₂ is 0,113 dm³.
Ideal gas law = pV = nRT.
p = 850 PSI = 5860543,6992 Pa.
Psi <span>is the abbreviation of pound per square inch.
T = 21</span>°C = 294,15 K.
n = 0,273 mol.
R = 8,314 J/K·mol.
V = nRT ÷ p
V = 0,273 mol · 8,314 J/K·mol · 294,15 K ÷ 5860543,6992 Pa.
V = 0,00011 m³ = 0,113 dm³.
Balanced equation for the above reaction is as follows;
Mg(OH)₂ + 2HCl ---> MgCl₂ + 2H₂O
stoichiometry of Mg(OH)₂ to MgCl₂ is 1:1
mass of Mg(OH)₂ reacted - 1.82 g
number of moles of Mg(OH)₂ - 1.82 g/ 58.3 g/mol = 0.0312 mol
number of Mg(OH)₂ moles reacted - number of MgCl₂ moles formed
number of MgCl₂ moles formed - 0.0312 mol
mass of MgCl₂ formed - 0.0312 mol x 95.2 g/mol = 2.97 g
mass of MgCl₂ formed - 2.97 g
According to the second order formula:
1/[At] = K t + 1/[Ao]
and when we have the K constant =0.0265 & we have t = 180 min & we have the initial concentration of A = 4.25 so by substitution:
1/[At] = 0.0265 X 180min + 1/4.25
1/[At] = 5
∴[At] = 1/5 = 0.2 m
A joule times a second :)