To get which design would have maximum area we need to evaluate the area for Tyler's design. Given that the design is square, let the length= xft, width=(120-x)
thus:
area will be:
P(x)=x(120-x)
P(x)=120x-x²
For maximum area P'(x)=0
P'(x)=120-2x=0
thus
x=60 ft
thus for maximum area x=60 ft
thus the area will be:
Area=60×60=3600 ft²
Thus we conclude that Tyler's design is the largest. Thus:
the answer is:
<span>Tyler’s design would give the larger garden because the area would be 3,600 ft2. </span>
Answer:
Below.
Step-by-step explanation:
If its a right triangle it will obey the Pythagoras theorem.
17^2 = 289
11^2 + 15^2 = 121 + 225 = 346
- so NOT a right triangle.
The first figure has 3 angles, the second one has 4 angles, the third one has 5 angles so the next one will have 6 angles.
The violet figures inside stick with each side of the outer figures in the middle, so the last figure will look more less like in the attachment.
Answer:
the probability is ½
Step-by-step explanation:
think so
3 x 10 (with a small 6 at the top right of the ten). Hope this helped