Explanation:
Hemophilia is a disease that is characterized by an abnormal blood clotting process. There are many different proteins that are involved in the clotting process and a single mutation or change in one of them could result in serious effects. Hemophilia is characterized by an abnormal version of one of the many proteins involved in the clotting process, the proteins that are commonly affected are the coagulation factor 8 or 9 (VIII or IX). These abnormal proteins are caused by a mutation in the gene (within the DNA) that codifies for the production of each protein. In other words, a mutation in the part of the DNA, (gene F8) will lead to a dysfunctional coagulation factor VIII and a mutation in the gene F9 will lead to a dysfunctional coagulation factor IX. Importantly, these mutations could be inherited and could cause hemophilia. Therefore, an error in the DNA and subsequently, an error in the protein will cause hemophilia. Finally, it is important to mention that there are other types of hemophilia that are not caused by the above-mentioned mutations, such as acquired hemophilia.
Answer:
Explanation:
The genes in DNA encode protein molecules, which are the "workhorses" of the cell, carrying out all the functions necessary for life. For example, enzymes, including those that metabolize nutrients and synthesize new cellular constituents, as well as DNA polymerases and other enzymes that make copies of DNA during cell division, are all proteins.
In the simplest sense, expressing a gene means manufacturing its corresponding protein, and this multilayered process has two major steps. In the first step, the information in DNA is transferred to a messenger RNA (mRNA) molecule by way of a process called transcription. During transcription, the DNA of a gene serves as a template for complementary base-pairing, and an enzyme called RNA polymerase II catalyzes the formation of a pre-mRNA molecule, which is then processed to form mature mRNA (Figure 1). The resulting mRNA is a single-stranded copy of the gene, which next must be translated into a protein molecule.
During translation, which is the second major step in gene expression, the mRNA is "read" according to the genetic code, which relates the DNA sequence to the amino acid sequence in proteins (Figure 2). Each group of three bases in mRNA constitutes a codon, and each codon specifies a particular amino acid (hence, it is a triplet code). The mRNA sequence is thus used as a template to assemble—in order—the chain of amino acids that form a protein
But where does translation take place within a cell? What individual substeps are a part of this process? And does translation differ between prokaryotes and eukaryotes? The answers to questions such as these reveal a great deal about the essential similarities between all species.
first one is definitely a fact
Answer:
Fiber
Explanation:
Fiber is one kind of carbohydrate which is indigestible by the body. Fiber is a part of plant foods which is not digestible for our body.