1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rina8888 [55]
3 years ago
9

Write an expression to represent ( 2 times the difference of t and 11 )

Mathematics
1 answer:
Ierofanga [76]3 years ago
8 0
2(t-11) would be the answer i think
You might be interested in
Suppose Madison is traveling due west for 0.5 miles and then due south for 1.2 miles.
sweet [91]

Answer:

b) 1.3 units

b) 22.61° East of North

Step-by-step explanation:

|\vec{AB}|=\sqrt{0.5^2+1.2^2}\\\Rightarrow |\vec{AB}|=\sqrt{0.25+1.44}\\\Rightarrow |\vec{AB}|=\sqrt{1.69}\\\Rightarrow |\vec{AB}|=1.3

|\vec{AB}|=1.3\ units

Magnitude of vector AB is 1.3 units

tan\theta=\frac{0.5}{1.2}\\\Rightarrow \theta=tan^{-1}\frac{0.5}{1.2}\\\Rightarrow \theta=22.61^{\circ}

The direction of vector AB is 22.61° East of North

8 0
3 years ago
Identify the vertex of g(x) = (x + 14)? - 8.
Aleks04 [339]
Do you think you can send a picture of the problem I’m not really understanding
6 0
3 years ago
Geometry:<br> What is the correct answer?
Allushta [10]
The last one I think
4 0
3 years ago
Given f(x)=x^2+2x+3 and g(x)=x+4/3 solve for f(g(x)) when x=2
Makovka662 [10]

Answer:

\displaystyle\mathsf{f(g(2)) \:=\:\frac{187}{9}}

Step-by-step explanation:

We are provided with the following functions:

f(x) = x² + 2x + 3

\displaystyle\mathsf{ g(x)\:=\:x+\frac{4}{3} }

The given problem also requires to find the Composition of Functions, f(g(x)) when x = 2.

The <u>Composition of Function</u> <em>f</em> with function <em>g</em> can be expressed as ( <em>f ° g </em>)(x) = f(g(x)).  In solving for the composition of functions, we must first evaluate the <em>innermost</em> function, g(x), then use the output as an input for f(x).

<h2>Solve for f(g(x)) when x = 2:</h2><h3><u>Find g(x):</u></h3>

Starting with g(x), we will use x = 2 as an <u>input</u> value into the function:

\displaystyle\mathsf{ g(x)\:=\:x+\frac{4}{3} }

\displaystyle\mathsf{ g(2)\:=\:(2)+\frac{4}{3} }

Transform the first term, x = 2, into a fraction with a denominator of 3 to combine with 4/3:

\displaystyle\mathsf{ g(2)\:=\:\frac{2\: \times\ 3}{3}+\frac{4}{3} }

\displaystyle\mathsf{ g(2)\:=\:\frac{6}{3}+\frac{4}{3}\:=\:\frac{6+4}{3}}

\displaystyle\mathsf{ g(2)\:=\:\frac{10}{3} }

\displaystyle\mathsf{Therefore,\:\: g(2)\:=\:\frac{10}{3} }

<h3><u>Find f(x):</u></h3>

Next, we will use  \displaystyle\mathsf{\frac{10}{3}}&#10; as input for the function, f(x) = x² + 2x + 3:

f(x) = x² + 2x + 3

\displaystyle\mathsf{f\Bigg (\frac{10}{3}\Bigg)\:=\:x^2 \:+ 2x\:+\:3}

\displaystyle\mathsf{f\Bigg (\frac{10}{3}\Bigg) \:=\:\Bigg (\frac{10}{3}\Bigg)^{2}\:+ 2\Bigg(\frac{10}{3}\Bigg) \:+\:3}

Use the <u>Quotient-to-Power Rule of Exponents</u> onto the <em>leading term </em>(x²):

\displaystyle\mathsf{Quotient-to-Power\:\:Rule:\:\: \Bigg(\frac{a}{b}\Bigg)^m\:=\:\frac{a^m}{b^m} }

\displaystyle\mathsf{f\Bigg (\frac{10}{3}\Bigg) \:=\:\Bigg (\frac{10\:^2}{3\:^2}\Bigg)\:+ 2\Bigg(\frac{10}{3}\Bigg) \:+\:3}

Multiply the numerator (10) of the middle term by 2:

\displaystyle\mathsf{f\Bigg (\frac{10}{3}\Bigg) \:=\:\Bigg (\frac{100}{9}\Bigg)\:+ \Bigg(\frac{20}{3}\Bigg) \:+\:\frac{3}{1}}

  • Determine the <u>least common multiple (LCM)</u> of the denominators from the previous step: 9, 3, and 1 (which is 9).
  • Then, transform the denominators of 20/3 and 3/1 on the <u>right-hand side</u> of the equation into like-fractions:

                       \displaystyle\mathsf{\frac{20}{3}\Rightarrow \:\frac{20\:\times\ 3}{3\:\times\ 3} =\:\frac{60}{9}}

                        \displaystyle\mathsf{\frac{3}{1}\Rightarrow \:\frac{3\:\times\ 9}{1\:\times\ 9} =\:\frac{27}{9}}

Finally, add the three fractions on the right-hand side of the equation:

\displaystyle\mathsf{f\Bigg (\frac{10}{3}\Bigg) \:=\:\Bigg (\frac{100}{9}\Bigg)\:+ \Bigg(\frac{60}{9}\Bigg) \:+\:\frac{27}{9}\:=\:\frac{187}{9}}

<h2>Final Answer:</h2>

\displaystyle\mathsf{Therefore,\:\:f(g(2)) \:=\:\frac{187}{9}.}

<h3>______________________________</h3>

<em>Keywords:</em>

Composition of functions

f o g

f (g(x))

____________________________________

Learn more about <u><em>Composition of Functions</em></u> here:

brainly.com/question/11388036

8 0
2 years ago
What is equivalent to 3^2 = 9
dmitriy555 [2]
3*3=9 it is the same thing as saying g 3 times 3 = 9
4 0
3 years ago
Other questions:
  • If 52 is 130% of a number, is the number greater or less than 52? Explain.
    14·1 answer
  • Fill in the other coordinate for the line 3x-5y=2:(2,?)
    14·1 answer
  • it takes 4 cups of suger to bake a cake and 2 cups of suger to make a tray of cookies. Mary has a total of 15 cups of sugar to b
    14·1 answer
  • What is 0+-4????????????
    7·2 answers
  • In the figure, if m∠ABD = 120º, then m∠ADC =? º.
    5·2 answers
  • Write 3×1/6 in simplest form
    5·2 answers
  • Rahul deposited a sum of Rs.32500 in the bank for 2 years, compounded half yearly at 12% per annum. Find the compound interest h
    6·1 answer
  • Find the value of the expression 4a to the fourth power - 2b squared +40 when a =2 and b=7
    7·1 answer
  • Somebody help me with this <br><br> 20 points
    12·1 answer
  • What are the names of four coplanar points?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!