The trapezoidal approximation will be the average of the left- and right-endpoint approximations.
Let's consider a simple example of estimating the value of a general definite integral,

Split up the interval
![[a,b]](https://tex.z-dn.net/?f=%5Ba%2Cb%5D)
into

equal subintervals,
![[x_0,x_1]\cup[x_1,x_2]\cup\cdots\cup[x_{n-2},x_{n-1}]\cup[x_{n-1},x_n]](https://tex.z-dn.net/?f=%5Bx_0%2Cx_1%5D%5Ccup%5Bx_1%2Cx_2%5D%5Ccup%5Ccdots%5Ccup%5Bx_%7Bn-2%7D%2Cx_%7Bn-1%7D%5D%5Ccup%5Bx_%7Bn-1%7D%2Cx_n%5D)
where

and

. Each subinterval has measure (width)

.
Now denote the left- and right-endpoint approximations by

and

, respectively. The left-endpoint approximation consists of rectangles whose heights are determined by the left-endpoints of each subinterval. These are

. Meanwhile, the right-endpoint approximation involves rectangles with heights determined by the right endpoints,

.
So, you have


Now let

denote the trapezoidal approximation. The area of each trapezoidal subdivision is given by the product of each subinterval's width and the average of the heights given by the endpoints of each subinterval. That is,

Factoring out

and regrouping the terms, you have

which is equivalent to

and is the average of

and

.
So the trapezoidal approximation for your problem should be
Pi because pi can be any number, it could be 2 or 1299 or even 1000000 so that is why the answer to your question Nicolas is pi.
Answer:-12^8
Step-by-step explanation:
Answer:
10x^7-5x^6+15x^3
Step-by-step explanation:
Distribute the 5x^3 to all the terms
The surface area of the balloon is 249 in².
<h3>What is the surface area of the balloon ?</h3>
A balloon has the shape of a sphere. The distance round the sphere is equal to the circumference of the sphere.
Circumference of the sphere = 2πr
Where:
- r = radius
- π = pi = 22 / 7
Radius - circumference / 2π
28 / ( 2 x 22/7) = 4.45 inches
Surface area of a sphere = 4πr²
4 x 22/7 x 4.45² = 249 in²
To learn more about the surface area of a sphere, please check: brainly.com/question/27267844
#SPJ1