Answer:


Step-by-step explanation:
In single-variable calculus, the difference quotient is the expression
,
which its name comes from the fact that it is the quotient of the difference of the evaluated values of the function by the difference of its corresponding input values (as shown in the figure below).
This expression looks similar to the method of evaluating the slope of a line. Indeed, the difference quotient provides the slope of a secant line (in blue) that passes through two coordinate points on a curve.
.
Similarly, the difference quotient is a measure of the average rate of change of the function over an interval. When the limit of the difference quotient is taken as <em>h</em> approaches 0 gives the instantaneous rate of change (rate of change in an instant) or the derivative of the function.
Therefore,


<h3>
Answer: 24a^4 + 36a^3 + 12a^2</h3>
Explanation:
The blue rectangle has area of 4a^2*6a^2 = 24a^4
The red rectangle has area 4a^2*9a = 36a^3
The green rectangle has area 4a^2*3 = 12a^2
The total area is 24a^4 + 36a^3 + 12a^2
Answer:
P(t) = 14300e^0.07t
Step-by-step explanation:
Let :
Population as a function of years, t = P(t) ;
Growth rate, r = 7%
Estimated population on year 2000 = Initial population = 14300
The given scenario can be modeled using an exponential function as the change in population is based in a certain percentage increase per period.
P(t) = Initial population*e^rt
P(t) = 14300*e^(0.07t)
P(t) = 14300e^0.07t
Where, t = number of years after year 2000.
50 per share hope this helped