Answer:
The acceleration is 6 [m/s^2]
Explanation:
We can find the acceleration of the roller coaster using the kinematic equation for uniformly accelerated motion.
![v_{f} =v_{i} + a*t\\where:\\v_{f} = final velocity = 22 [m/s]\\v_{i} = initial velocity = 4 [m/s]\\t = time = 3 [s]\\](https://tex.z-dn.net/?f=v_%7Bf%7D%20%3Dv_%7Bi%7D%20%2B%20a%2At%5C%5Cwhere%3A%5C%5Cv_%7Bf%7D%20%3D%20final%20velocity%20%3D%2022%20%5Bm%2Fs%5D%5C%5Cv_%7Bi%7D%20%3D%20initial%20velocity%20%3D%204%20%5Bm%2Fs%5D%5C%5Ct%20%3D%20time%20%3D%203%20%5Bs%5D%5C%5C)
Now replacing the values we have:
![a=\frac{v_{f} - v_{i} }{t} \\a=\frac{22 - 4 }{3}\\a = 6 [m/s^{2} ]](https://tex.z-dn.net/?f=a%3D%5Cfrac%7Bv_%7Bf%7D%20-%20v_%7Bi%7D%20%7D%7Bt%7D%20%5C%5Ca%3D%5Cfrac%7B22%20-%204%20%7D%7B3%7D%5C%5Ca%20%3D%206%20%5Bm%2Fs%5E%7B2%7D%20%5D)
Researchers found the "cosmic microwave background radiation", which is a heat imprint left over from the big bang.
The redshift of light emitted by most galaxies indicates the universe is expanding.
Easier to write, easier to read, easier to understand, easier to compare
Answer:
(a): emf =
(b): Amplitude of alternating voltage = 20.942 Volts.
Explanation:
<u>Given:</u>
- Area of the coil = A.
- Number of turns of coil = N.
- Magnetic field = B
- Rotation frequency = f.
(a):
The magnetic flux through the coil is given by

where,
= area vector of the coil directed along the normal to the plane of the coil.
= angle between
and
.
Assuming, the direction of magnetic field is along the normal to the plane of the coil initially.
At any time t, the angle which magnetic field makes with the normal to the plane of the coil is 
Therefore, the magnetic flux linked with the coil at any time t is given by

According to Faraday's law of electromagnetic induction, the emf induced in the coil is given by

(b):
The amplitude of the alternating voltage is the maximum value of the emf and emf is maximum when 
Therefore, the amplitude of the alternating voltage is given by

We have,

Putting all these values,

For a current-carrying wire running perpendicular to a magnetic field, the magnetic force acting on the wire is given by:
F = ILB
F = magnetic force, I = current, L = wire length, B = magnetic field strength
Given values:
F = 0.60N, L = 1.0m, B = 0.20T
Plug in and solve for I:
0.60 = I(1.0)(0.20)
I = 3.0A