Answer:
(d) Negative.
Explanation:
let's test each at a time.
(a) It can't be 0, because cup would slide back other wise.
(b) Positive, well if forward is positive, than the work done against the forward acceleration must be negative , so it can't be positive.
(c) Equal to non-conservative work done by the car's engine.
well no, because work done by car's engine dosen't go all of it into getting car to move, so it can't be that.
(d) negative, this look like it, because work that friction does must be nagative to counteract positive thrust of car which is positive and in forward direction.
(d) this can't be true.
So the answer is (d) negative.
That's the period of time known as one solar "day". We subdivide it into 24 slices which we call "hours". Using this system of time units, the day is about 4 minutes longer than one complete axial rotation of the Earth.
Answer:
R₁ = 50.77 Ω
Explanation:
Since, we know that:
Electric Power = P = VI
but from Ohm's Law:
V = IR
(or) I = V/R
Therefore,
P = V²/R
(OR) R = V²/P
where,
V = Battery Voltage
R = Resistance of combination
FOR SERIES COMBINATION:
R = Rs = (57 V)²/48 W
Rs = 67.69 Ω
but, we know that:
Rs = R₁ + R₂
R₁ + R₂ = 67.69 Ω
R₁ = 67.69 Ω - R₂ __________ eqn (1)
FOR PARALLEL COMBINATION:
R = Rp = (57 V)²/256 W
Rp = 12.69 Ω
but, we know that:
Rp = (R₁R₂)/(R₁ + R₂) = 12.69 Ω
using eqn (1) and value of R₁ + R₂, we get
Rp = 12.69 = R₂(67.69 - R₂)/67.69
859.08 = 67.69 R₂ - R₂²
R₂² - 67.69 R₂ + 859.08 = 0
Solving this quadratic equation we get the answers:
Either, R₂ = 50.76 Ω
Either, R₂ = 16.92 Ω
Since, it is stated in the question that R₁ > R₂. Therefore, we choose the second value. So,
<u>R₂ = 16.92 Ω</u>
using this value in eqn (1), we get:
R₁ = 67.69 Ω - 16.92 Ω
<u>R₁ = 50.77 Ω</u>