1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexandra [31]
2 years ago
12

The length (L) of the figure is 11 mm and the width (w) is 9 mm. What is the perimeter of the shaded region? Round to the neares

t tenth.

Mathematics
1 answer:
Lera25 [3.4K]2 years ago
7 0

Answer:

50.3 mm

Step-by-step explanation:

The perimeter of the shaded region = perimeter of a full circle + 2(Length)

= πd + 2(L)

diameter (d) = width = 9 mm

Length (L) = 11 mm

Perimeter of the shaded region = π*9 + 2(11)

= 50.2743339 ≈ 50.3 mm (nearest tenth)

You might be interested in
Find the measure of the indicator arc
harina [27]

Answer:

m(WXY) = 224°

Step-by-step explanation:

Measure of inscribed angle = ½ the measure of intercepted arc

Therefore:

m<C = ½*m(WXY)

112° = ½*m(WXY) (substitution)

Multiply both sides by 2

2*112° = m(WXY)

224° = m(WXY)

m(WXY) = 224°

8 0
3 years ago
#Quality answer needed <br>#No spam _/|\_​
Rina8888 [55]

Answer:

<h2><em><u>5.71</u></em><em><u>%</u></em></h2>

Step-by-step explanation:

<em><u>Given</u></em><em><u>,</u></em>

Cost price of the car when Arjun bought = ₹ 3,50,000

Cost price of that same car after 1 year = ₹ 3,70,000

<em><u>So</u></em><em><u>,</u></em>

Amount of money increased on the car's price

= ₹ (3,70,000 - 3,50,000)

= ₹ 20,000

<em><u>Therefore</u></em><em><u>,</u></em><em><u> </u></em>

Percentage of increase on the car's price

=  \frac{20000}{350000}  \times 100

  • <em>[</em><em>On</em><em> </em><em>Simplification</em><em>]</em>

=  \frac{2}{35}  \times 100

  • <em>[</em><em>On</em><em> </em><em>further</em><em> </em><em>Simplification</em><em>]</em>

= 5.7142......

= 5.71 (approx.)

<em><u>Hence</u></em><em><u>,</u></em>

<em><u>Percentage</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>increase</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>car's</u></em><em><u> </u></em><em><u>price</u></em><em><u> </u></em><em><u>was</u></em><em><u> </u></em><em><u>5.71</u></em><em><u>%</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em>

7 0
2 years ago
Read 2 more answers
Solve for X, square root 2x = square root x+5
inessss [21]
X = 5
Move the variable then cells to like terms and simplify
4 0
3 years ago
If a + b = c, which of the following statements is true?
yulyashka [42]

Answer:

c-a=b

Step-by-step explanation:

6 0
3 years ago
Let A be a given matrix below. First, find the eigenvalues and their corresponding eigenspaces for the following matrices. Then,
Rama09 [41]

It looks like given matrices are supposed to be

\begin{array}{ccccccc}\begin{bmatrix}3&2\\2&3\end{bmatrix} & & \begin{bmatrix}1&-1\\2&-1\end{bmatrix} & & \begin{bmatrix}1&2&3\\0&2&3\\0&0&3\end{bmatrix} & & \begin{bmatrix}3&1&1\\1&3&1\\1&1&3\end{bmatrix}\end{array}

You can find the eigenvalues of matrix A by solving for λ in the equation det(A - λI) = 0, where I is the identity matrix. We also have the following facts about eigenvalues:

• tr(A) = trace of A = sum of diagonal entries = sum of eigenvalues

• det(A) = determinant of A = product of eigenvalues

(a) The eigenvalues are λ₁ = 1 and λ₂ = 5, since

\mathrm{tr}\begin{bmatrix}3&2\\2&3\end{bmatrix} = 3 + 3 = 6

\det\begin{bmatrix}3&2\\2&3\end{bmatrix} = 3^2-2^2 = 5

and

λ₁ + λ₂ = 6   ⇒   λ₁ λ₂ = λ₁ (6 - λ₁) = 5

⇒   6 λ₁ - λ₁² = 5

⇒   λ₁² - 6 λ₁ + 5 = 0

⇒   (λ₁ - 5) (λ₁ - 1) = 0

⇒   λ₁ = 5 or λ₁ = 1

To find the corresponding eigenvectors, we solve for the vector v in Av = λv, or equivalently (A - λI) v = 0.

• For λ = 1, we have

\begin{bmatrix}3-1&2\\2&3-1\end{bmatrix}v = \begin{bmatrix}2&2\\2&2\end{bmatrix}v = 0

With v = (v₁, v₂)ᵀ, this equation tells us that

2 v₁ + 2 v₂ = 0

so that if we choose v₁ = -1, then v₂ = 1. So Av = v for the eigenvector v = (-1, 1)ᵀ.

• For λ = 5, we would end up with

\begin{bmatrix}-2&2\\2&-2\end{bmatrix}v = 0

and this tells us

-2 v₁ + 2 v₂ = 0

and it follows that v = (1, 1)ᵀ.

Then the decomposition of A into PDP⁻¹ is obtained with

P = \begin{bmatrix}-1 & 1 \\ 1 & 1\end{bmatrix}

D = \begin{bmatrix}1 & 0 \\ 0 & 5\end{bmatrix}

where the n-th column of P is the eigenvector associated with the eigenvalue in the n-th row/column of D.

(b) Consult part (a) for specific details. You would find that the eigenvalues are i and -i, as in i = √(-1). The corresponding eigenvectors are (1 + i, 2)ᵀ and (1 - i, 2)ᵀ, so that A = PDP⁻¹ if

P = \begin{bmatrix}1+i & 1-i\\2&2\end{bmatrix}

D = \begin{bmatrix}i&0\\0&i\end{bmatrix}

(c) For a 3×3 matrix, I'm not aware of any shortcuts like above, so we proceed as usual:

\det(A-\lambda I) = \det\begin{bmatrix}1-\lambda & 2 & 3 \\ 0 & 2-\lambda & 3 \\ 0 & 0 & 3-\lambda\end{bmatrix} = 0

Since A - λI is upper-triangular, the determinant is exactly the product the entries on the diagonal:

det(A - λI) = (1 - λ) (2 - λ) (3 - λ) = 0

and it follows that the eigenvalues are λ₁ = 1, λ₂ = 2, and λ₃ = 3. Now solve for v = (v₁, v₂, v₃)ᵀ such that (A - λI) v = 0.

• For λ = 1,

\begin{bmatrix}0&2&3\\0&1&3\\0&0&2\end{bmatrix}v = 0

tells us we can freely choose v₁ = 1, while the other components must be v₂ = v₃ = 0. Then v = (1, 0, 0)ᵀ.

• For λ = 2,

\begin{bmatrix}-1&2&3\\0&0&3\\0&0&1\end{bmatrix}v = 0

tells us we need to fix v₃ = 0. Then -v₁ + 2 v₂ = 0, so we can choose, say, v₂ = 1 and v₁ = 2. Then v = (2, 1, 0)ᵀ.

• For λ = 3,

\begin{bmatrix}-2&2&3\\0&-1&3\\0&0&0\end{bmatrix}v = 0

tells us if we choose v₃ = 1, then it follows that v₂ = 3 and v₁ = 9/2. To make things neater, let's scale these components by a factor of 2, so that v = (9, 6, 2)ᵀ.

Then we have A = PDP⁻¹ for

P = \begin{bmatrix}1&2&9\\0&1&6\\0&0&2\end{bmatrix}

D = \begin{bmatrix}1&0&0\\0&2&0\\0&0&3\end{bmatrix}

(d) Consult part (c) for all the details. Or, we can observe that λ₁ = 2 is an eigenvalue, since subtracting 2I from A gives a matrix of only 1s and det(A - 2I) = 0. Then using the eigen-facts,

• tr(A) = 3 + 3 + 3 = 9 = 2 + λ₂ + λ₃   ⇒   λ₂ + λ₃ = 7

• det(A) = 20 = 2 λ₂ λ₃   ⇒   λ₂ λ₃ = 10

and we find λ₂ = 2 and λ₃ = 5.

I'll omit the details for finding the eigenvector associated with λ = 5; I ended up with v = (1, 1, 1)ᵀ.

• For λ = 2,

\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}v = 0

tells us that if we fix v₃ = 0, then v₁ + v₂ = 0, so that we can pick v₁ = 1 and v₂ = -1. So v = (1, -1, 0)ᵀ.

• For the repeated eigenvalue λ = 2, we find the generalized eigenvector such that (A - 2I)² v = 0.

\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}^2 v = \begin{bmatrix}3&3&3\\3&3&3\\3&3&3\end{bmatrix}v = 0

This time we fix v₂ = 0, so that 3 v₁ + 3 v₃ = 0, and we can pick v₁ = 1 and v₃ = -1. So v = (1, 0, -1)ᵀ.

Then A = PDP⁻¹ if

P = \begin{bmatrix}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{bmatrix}

D = \begin{bmatrix}5&0&0\\0&2&0\\0&2&2\end{bmatrix}

3 0
3 years ago
Other questions:
  • Can you help me with this problem
    8·1 answer
  • Which statement could be an interpretation of the graphs x intercept or y intercept
    14·2 answers
  • W+3 3/8=1 5/6 what does w equal?
    8·1 answer
  • The drama club was selling tickets
    8·1 answer
  • TIME REMAINING
    12·2 answers
  • Please help!!!!!!!!!!!!!!!
    11·2 answers
  • A bag contains 4 green, 2 blue, and 3 yellow marbles. If you were to select one marble, what is the probability of not drawing a
    9·1 answer
  • Someone answer right por favor
    15·2 answers
  • A proof of the Alternate Interior Angles Theorem, using parallel lines a and b with transversal m, is shown below.
    15·2 answers
  • 1<br> _x = 9 <br> 6<br> Solving equations
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!