Answer:
11 dimes equals 110
Step-by-step explanation:
so you have 3.45 cents.
F(x) = -x+2
F(x-4) = ?
-(x+4)+2 = -x-4+2 = -x-2.
Hope this helps!
Answer:
1. Proved down
2. proved down
3. f(10) = -20 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5
Step-by-step explanation:
Let us explain how to solve the question
∵ f(0) = -20, f(n) = f(n - 1) - 5 for n > 1
→ That means we have an arithmetic sequence with constant
difference -5 and first term -20
1. → f(1) means we need to find the second term, which equal the
term - 5
∵ f(1) means n = 1
∴ f(1) = f(1 - 1) - 5
∴ f(1) = f(0) - 5
∵ f(0) = -20
∴ f(1) = -20 - 5 → Proved
2. → f(3) means we need to find the third term, which equal the
second term - 5
∵ f(3) means n = 3
∴ f(3) = f(3 - 1) - 5
∴ f(3) = f(2) - 5
→ f(2) = f(1) - 5
∵ f(1) = -20 - 5
∴ f(2) = [-20 - 5] - 5 = -20 - 5 - 5
∴ f(3) = [-20 - 5 - 5] - 5
∴ f(3) = -20 - 5 - 5 - 5 → Proved
3. → From 1 and 2 we notice that the number of -5 is equal to n,
at n = 1 there is one (-5), when n= 3 there are three (-5)
∵ n = 10
∴ There are ten (-5)
∴ f(10) = -20 - 5(10)
∴ f(10) = -20 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 → Proved
The system of inequalities is:
and 
<em><u>Explanation</u></em>
Let
be the amount of live bait and
be the amount of natural bait.
As John would like to get at least 3 pounds of live bait, so the first inequality will be: 
Given that, price of live bait is $12 per pound and natural bait is $7 per pound. Also, he only has a budget of $63. That means, he can spend maximum $63
So, the cost for buying
pound of live bait
and the cost for buying
pound of natural bait 
Thus, the second inequality will be: 