LFX=AZQ
XLF=QAZ
FXL=ZQA
XFL=QZA
Find the slope first
slope=(2-1)/(-1+3)=1/4=.25
now use the slope and either point to write in point slope form
y-1=.25(x-2)
y-1=¼x-½
to rationalize all the denominators multiply by the last common multiple, here we get 4
4y-4=x-2
then put in the correct order
x-4y=-2
So distribute using distributive property
a(b+c)=ab+ac so
split it up
(5x^2+4x-4)(4x^3-2x+6)=(5x^2)(4x^3-2x+6)+(4x)(4x^3-2x+6)+(-4)(4x^3-2x+6)=[(5x^2)(4x^3)+(5x^2)(-2x)+(5x^2)(6)]+[(4x)(4x^3)+(4x)(-2x)+(4x)(6)]+[(-4)(4x^3)+(-4)(-2x)+(-4)(6)]=(20x^5)+(-10x^3)+(30x^2)+(16x^4)+(-8x^2)+(24x)+(-16x^3)+(8x)+(-24)
group like terms
[20x^5]+[16x^4]+[-10x^3-16x^3]+[30x^2-8x^2]+[24x+8x]+[-24]=20x^5+16x^4-26x^3+22x^2+32x-24
the asnwer is 20x^5+16x^4-26x^3+22x^2+32x-24
Answer:
96
Step-by-step explanation:
The ratio of the measure of sides of a triangle are 8:15:17
The perimeter is 480
8x + 15x + 17x= 480
40x= 480
x = 480/40
x = 12
Therefore the measure of the shortest side of the triangle can be calculated as follows
8x
8×12
= 96