Answer:
The randomization distribution is created under the assumption that H₀: p = 0.1
The randomization distribution will also be centred at 0.1
Step-by-step explanation:
If the distribution was truly random, 1 out of 10 students will choose math as his/her favorite subject.
This means that the randomization will have the null hypothesis saying that the proportion of students who will choose maths as their favourite subject = 0.1
Mathematically, it'll be written as
The null hypothesis is given as
H₀: p = 0.1
And the randomization distribution will be centred at 0.1 too.
The alternative hypothesis will now prove the theory they're looking to see in the question that
Hₐ: p < 0.1
Hope this Helps!!!
√5 = 5^(1/2)
Multiplying two number with the same base has as result a number with the same base and the sum of the exponents so:
1/2 + 3 = 7/2
which means
5^3 x 5^(1/2) = 5^(7/2)
We have:
Event A ⇒ P(A) = 0.16
Event B ⇒ P(B) = 0.09
Probability of event B given event A happening, P(B|A) = P(A∩B) / P(A) = 0.12
By the conditional probability, the probability of event A and event B happens together is given by:
P(B|A) = P(A∩B) ÷ P(A)
P(B|A) = P(A∩B) ÷ 0.16
0.12 = P(A∩B) ÷ 0.16
P(A∩B) = 0.12 × 0.16
P(A∩B) = 0.0192
When two events are independent, P(A) × P(B) = P(A∩B) so if P(A∩B) = 0.0192, then P(B) will be 0.0192 ÷ 0.16 = 0.12 (which take us back to P(B|A))
Since P(B|A) does not equal to P(B), event A and event B are not independent.
Answer: <span>Events A and B are not independent because P(B|A) ≠ P(B)</span>
24 divided by 80= 0.3
24/30 there were 30 questions on the test and he got 24 right
R=fixed rate
m=rate of miles
n= miless
T(n)=total amount per miles(n)
T (n) =mn+r