Answer: 0, π, 2π
Nevertheless, that is not an option. I see two possibilities: 1) the options are misswirtten, 2) the domain is not well defined.
If the domain were 0 ≤ θ < 2π, then 2π were excluded of the domain ant the answer would be 0, π.
Explanation:
1) The first solution, θ = 0 is trivial:
sin (0) - tan (0) = 0
0 - 0 = 0
2) For other solutions, work the expression:
sin(θ) + tan (-θ) = 0 ← given
sin (θ) - tan(θ) = 0 ← tan (-θ) = tan(θ)
sin(θ) - sin (θ) / cos(θ) = 0 ← tan(θ) = sin(θ) / cos(θ)
sin (θ) [1 - 1/cos(θ)] = 0 ← common factor sin(θ)
⇒ Any of the two factors can be 0
⇒ sin (θ) = 0 or (1 - 1 / cos(θ) = 0,
sin(θ) = 0 ⇒ θ = 0, π, 2π
1 - 1/cos(θ) = 0 ⇒ 1/cos(θ) = 1 ⇒ cos(θ) = 1 ⇒ θ = 0, 2π
⇒ Solutions are 0, π, and 2π
In fact if you test with any of those values the equation is checked. The only way to exclude one of those solutions is changing the domain.
Answer:
Answer C:
Cannot be true because
is greater than zero in quadrant 2.
Step-by-step explanation:
When the csc of an angle is negative, since the cosecant function is defined as:

that means that the sin of the angle must be negative, and such cannot happen in the second quadrant. The sine function is positive in the first and second quadrant.
Therefore, the correct answer is:
Cannot be true because
is greater than zero in quadrant 2.
So 8x3 = 24
24 + 12x
the common factor is 12
so you divide everything by 12
24 ÷ 12 = 2
12x ÷ 12 = x
final answer: 12 (2+x)