Put the <em>wood and excess oxygen in a closed contai</em>ner that contains some device that can create a spark (to start the reaction).
Determine the <em>mass of container + contents</em>.
<em>Start the reaction</em> and, after everything has cooled down, again determine the <em>mass of container + contents</em>.
If the two masses are the same, you have demonstrated that the reaction obeys the Law of Conservation of Mass.
Answer:
C. CH3COOH, Ka = 1.8 E-5
Explanation:
analyzing the pKa of the given acids:
∴ pKa = - Log Ka
A. pKa = - Log (1.0 E-3 ) = 3
B. pKa = - Log (2.9 E-4) = 3.54
C. pKa = - Log (1.8 E-5) = 4.745
D. pKa = - Log (4.0 E-6) = 5.397
E. pKa = - Log (2.3 E-9) = 8.638
We choose the (C) acid since its pKa close to the expected pH.
⇒ For a buffer solution formed from an acid and its respective salt, we have the equation Henderson-Hausselbach (H-H):
- pH = pKa + Log ([CH3COO-]/[CH3COOH])
∴ pH = 4.5
∴ pKa = 4.745
⇒ 4.5 = 4.745 + Log ([CH3COO-]/[CH3COOH])
⇒ - 0.245 = Log ([CH3COO-]/[CH3COOH])
⇒ 0.5692 = [CH3COO-]/[CH3COOH]
∴ Ka = 1.8 E-5 = ([H3O+].[CH3COO-])/[CH3COOH]
⇒ 1.8 E-5 = [H3O+](0.5692)
⇒ [H3O+] = 3.1623 E-5 M
⇒ pH = - Log ( 3.1623 E-5 ) = 4.5
The answer should be Aegle marmelos
Answer:
The answer is: the body contains chemicals called buffers that resist changes in pH
When you exercise vigorously, the muscle will produce more carbon dioxide which will makes the blood more acidic. Human blood have some mechanism that could prevent the blood pH to stray further from the optimal range. One of the buffer that keep carbon dioxide acidity would be sodium bicarbonate.
Explanation:
<h2>
it just be like that sometimes my dude</h2>
An electron
proton=positive charge
electron=negative charge