Answer:
8 family members. Average of 2.6 fish per person.
Step-by-step explanation:
How many family members caught fish? Count only those members who caught at least 1 fish (that's all of them, because nobody caught 0 fish!).
3 + 1 + 0 + 4 = 8 family members.
Average number of fish caught <u>per person</u>. This is the total number of fish caught divided by the total number of people.
This is a little bit tricky because, for example, 4 people caught 4 fish, making 4 x 4 = 16 fish caught.
Multiply number of fish (column 1) by the number of people (column 2):
1 x 3 + 2 x 1 + 3 x 0 + 4 x 4 = 3 + 2 + 0 + 16 = 21 fish caught.
21 fish. 8 people. On average, that is 21 / 8 = 2.625 which rounds to 2.6 fish per person.
Hint: the word "per" means <u>divide</u>, so "fish per person" tells you to divide the total number of fish by the total number of people.
Good Luck!
Answer:
Total Commission = $400
Step-by-step explanation:
Since total is $9000 (in sales) -- commision is 4% on the first $8000 and 8% in the additional part over $8000 (9000-8000=1000). So 8% on $1000.
<u>Total commission</u> = 4% of 8000 + 8% of 1000
= (0.04)(8000) + (0.08)(1000)
= 400
Total Commission is $400
Answer:
x=
1/3 and y=−6
Step-by-step explanation:
If you want step by step explanation you can get your explanation from
https://www.mathpapa.com And just type that answer in where it says what do you want to calculate? type it in that box and it give you step by step but i gave you the answer up top you just need the explanation the explanation is hard to type in here that's why i have you that website :)
Usando la distribución binomial, hay una probabilidad de 0.8926 = 89.26% de que el guardia de seguridad encuentre al menos uno en la base militar restringida.
<h3>¿Qué es la distribución binomial?</h3>


Los parámetros son:
- n es el número de ensayos.
- p es la probabilidad de éxito en un ensayo
En este problema, hay que:
- 20% de los empleados de la población civil que está en una base militar restringida porta su identificación personal, o sea p = 0.2.
- Llegan 10 empleados, o sea, n = 10.
La probabilidad de que el guardia de seguridad encuentre al menos uno en la base militar restringida es dada por:

En que:


Por eso:

Hay una probabilidad de 0.8926 = 89.26% de que el guardia de seguridad encuentre al menos uno en la base militar restringida.
Puede-se aprender más a cerca de la distribución binomial en brainly.com/question/25132113