The standard deviation for the number of people with the genetic mutation is 3.77
<h3>How to determine the standard deviation?</h3>
The given parameters are:
Sample size, n = 300
Proportion that has the particular genetic mutation, p = 5%
The standard deviation for the number of people with the genetic mutation is calculated as:
Standard deviation = √np(1 - p)
Substitute the known values in the above equation
Standard deviation = √300 * 5% * (1 - 5%)
Evaluate the product
Standard deviation = √14.25
Evaluate the exponent
Standard deviation = 3.77
Hence, the standard deviation for the number of people with the genetic mutation is 3.77
Read more about standard deviation at
brainly.com/question/12402189
#SPJ1
Answer:
Step-by-step explanation:
You can multiply the fraction by 6 and then you are able to cancel out and find the simplification
B - 3/4 = 7/10
add 3/4 to both sides to isolate the b
b = 7/10 + 3/4
b = 28/40 + 30/40
b = 58/40
b = 1 18/40
b = 1 9/20
Split up the interval [0, 2] into <em>n</em> equally spaced subintervals:
![\left[0,\dfrac2n\right],\left[\dfrac2n,\dfrac4n\right],\left[\dfrac4n,\dfrac6n\right],\ldots,\left[\dfrac{2(n-1)}n,2\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%5Cdfrac2n%5Cright%5D%2C%5Cleft%5B%5Cdfrac2n%2C%5Cdfrac4n%5Cright%5D%2C%5Cleft%5B%5Cdfrac4n%2C%5Cdfrac6n%5Cright%5D%2C%5Cldots%2C%5Cleft%5B%5Cdfrac%7B2%28n-1%29%7Dn%2C2%5Cright%5D)
Let's use the right endpoints as our sampling points; they are given by the arithmetic sequence,

where
. Each interval has length
.
At these sampling points, the function takes on values of

We approximate the integral with the Riemann sum:

Recall that

so that the sum reduces to

Take the limit as <em>n</em> approaches infinity, and the Riemann sum converges to the value of the integral:

Just to check:
