1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blsea [12.9K]
3 years ago
6

Find the average value of the function y = 6 - x2 over the interval [-1, 4]

Mathematics
1 answer:
kari74 [83]3 years ago
4 0

Answer:

The average value of the function f(x) = 6 - x^{2} over the interval [-1,4] is \frac{5}{3}.

Step-by-step explanation:

The average value of a function over an interval is represented by this integral:

\bar y = \frac{1}{b-a}\cdot \int\limits^{b}_{a} {f(x)} \, dx

Where:

a, b - Lower and upper bounds of the interval, dimensionless.

f(x) - Function, dimensionless.

If a = -1, b = 4 and f(x) = 6 - x^{2}, the average value of the function is:

\bar y = \frac{1}{4-(-1)}\int\limits^{4}_{-1} {6-x^{2}} \, dx

\bar y = \frac{6}{5}\int\limits^{4}_{-1} \, dx - \frac{1}{5}\int\limits^{4}_{-1} {x^{2}} \, dx

\bar y = \frac{6}{5}\cdot x |_{-1}^{4} - \frac{1}{15}\cdot x^{3}|_{-1}^{4}

\bar y = \frac{6}{5}\cdot [4-(-1)]- \frac{1}{15}\cdot [4^{3}-(-1)^{3}]

\bar y = \frac{5}{3}

The average value of the function f(x) = 6 - x^{2} over the interval [-1,4] is \frac{5}{3}.

You might be interested in
Negative five-fourths times a number and six is less than twelve.​
kodGreya [7K]

Answer:

-5/4x +6 < 12

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Divide 14 by v. Then, subtract 7.
Nastasia [14]

Answer:

14-7v

--------

  v

Step-by-step explanation:

i dont understand what else the answer could be, due to the fact that not enough information if provided to result in a solid sum.

3 0
3 years ago
If tan x° = a divided by 4 and cos x° = 4 divided by b what is the value of sin x°? (1 point) \
Rudiy27

Answer:

Sin x = a / b.

Step-by-step explanation:

The opposite side =a and the adjacent side = 4 (because tan x = a/4.

Cos x = 4/b so the hypotenuse = b ( because  Cos = adjacent /hypotenuse.

So sin x = opposite /hypotenuse = a / b.

3 0
3 years ago
4 Tan A/1-Tan^4=Tan2A + Sin2A​
Eva8 [605]

tan(2<em>A</em>) + sin(2<em>A</em>) = sin(2<em>A</em>)/cos(2<em>A</em>) + sin(2<em>A</em>)

• rewrite tan = sin/cos

… = 1/cos(2<em>A</em>) (sin(2<em>A</em>) + sin(2<em>A</em>) cos(2<em>A</em>))

• expand the functions of 2<em>A</em> using the double angle identities

… = 2/(2 cos²(<em>A</em>) - 1) (sin(<em>A</em>) cos(<em>A</em>) + sin(<em>A</em>) cos(<em>A</em>) (cos²(<em>A</em>) - sin²(<em>A</em>)))

• factor out sin(<em>A</em>) cos(<em>A</em>)

… = 2 sin(<em>A</em>) cos(<em>A</em>)/(2 cos²(<em>A</em>) - 1) (1 + cos²(<em>A</em>) - sin²(<em>A</em>))

• simplify the last factor using the Pythagorean identity, 1 - sin²(<em>A</em>) = cos²(<em>A</em>)

… = 2 sin(<em>A</em>) cos(<em>A</em>)/(2 cos²(<em>A</em>) - 1) (2 cos²(<em>A</em>))

• rearrange terms in the product

… = 2 sin(<em>A</em>) cos(<em>A</em>) (2 cos²(<em>A</em>))/(2 cos²(<em>A</em>) - 1)

• combine the factors of 2 in the numerator to get 4, and divide through the rightmost product by cos²(<em>A</em>)

… = 4 sin(<em>A</em>) cos(<em>A</em>) / (2 - 1/cos²(<em>A</em>))

• rewrite cos = 1/sec, i.e. sec = 1/cos

… = 4 sin(<em>A</em>) cos(<em>A</em>) / (2 - sec²(<em>A</em>))

• divide through again by cos²(<em>A</em>)

… = (4 sin(<em>A</em>)/cos(<em>A</em>)) / (2/cos²(<em>A</em>) - sec²(<em>A</em>)/cos²(<em>A</em>))

• rewrite sin/cos = tan and 1/cos = sec

… = 4 tan(<em>A</em>) / (2 sec²(<em>A</em>) - sec⁴(<em>A</em>))

• factor out sec²(<em>A</em>) in the denominator

… = 4 tan(<em>A</em>) / (sec²(<em>A</em>) (2 - sec²(<em>A</em>)))

• rewrite using the Pythagorean identity, sec²(<em>A</em>) = 1 + tan²(<em>A</em>)

… = 4 tan(<em>A</em>) / ((1 + tan²(<em>A</em>)) (2 - (1 + tan²(<em>A</em>))))

• simplify

… = 4 tan(<em>A</em>) / ((1 + tan²(<em>A</em>)) (1 - tan²(<em>A</em>)))

• condense the denominator as the difference of squares

… = 4 tan(<em>A</em>) / (1 - tan⁴(<em>A</em>))

(Note that some of these steps are optional or can be done simultaneously)

7 0
3 years ago
Giving brainliest *easy*
AlexFokin [52]
The answer is 3.10 because the 4 is in the hundredths place and if it’s 5 or more it would be 3.20 but in this case it’s lower than 5 so it would be 3.10
7 0
2 years ago
Read 2 more answers
Other questions:
  • Find dy/dx by implicit differentiation. x2 − 8xy + y2 = 8
    12·2 answers
  • Which statements are true? Check all that apply.
    10·2 answers
  • -10 2/7 davided by -4 4/11
    6·1 answer
  • Jamal uses the steps below to solve the equation 6x – 4 = 8.
    5·1 answer
  • PLS HELP IM SLOW<br><br><br> Which graph represents the function ?
    13·1 answer
  • Convert 100° to radians. Will mark brainlist if correct
    8·1 answer
  • What two number multiple to get -72 and add up to -6
    13·1 answer
  • 4 - 12 per hour. How many paners will that teacher review in 6-13 hours
    12·1 answer
  • Fill in the blanks with a positive or negative Integer
    11·1 answer
  • The mean of this data set is 9. What number is missing?<br><br> 11,20,_,3,1
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!