Answer:
The average value of the function
over the interval
is
.
Step-by-step explanation:
The average value of a function over an interval is represented by this integral:

Where:
,
- Lower and upper bounds of the interval, dimensionless.
- Function, dimensionless.
If
,
and
, the average value of the function is:



![\bar y = \frac{6}{5}\cdot [4-(-1)]- \frac{1}{15}\cdot [4^{3}-(-1)^{3}]](https://tex.z-dn.net/?f=%5Cbar%20y%20%3D%20%5Cfrac%7B6%7D%7B5%7D%5Ccdot%20%5B4-%28-1%29%5D-%20%5Cfrac%7B1%7D%7B15%7D%5Ccdot%20%5B4%5E%7B3%7D-%28-1%29%5E%7B3%7D%5D)

The average value of the function
over the interval
is
.