part A)
![\bf \begin{array}{|c|cccccc|ll} \cline{1-7} x&8&27&64&125&&x\\ \cline{1-7} y&\stackrel{\sqrt[3]{8}}{2}&\stackrel{\sqrt[3]{27}}{3}&\stackrel{\sqrt[3]{64}}{4}&\stackrel{\sqrt[3]{125}}{5}&&\sqrt[3]{x} \\ \cline{1-7} \end{array}~\hspace{10em}y = \sqrt[3]{x}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7B%7Cc%7Ccccccc%7Cll%7D%20%5Ccline%7B1-7%7D%20x%268%2627%2664%26125%26%26x%5C%5C%20%5Ccline%7B1-7%7D%20y%26%5Cstackrel%7B%5Csqrt%5B3%5D%7B8%7D%7D%7B2%7D%26%5Cstackrel%7B%5Csqrt%5B3%5D%7B27%7D%7D%7B3%7D%26%5Cstackrel%7B%5Csqrt%5B3%5D%7B64%7D%7D%7B4%7D%26%5Cstackrel%7B%5Csqrt%5B3%5D%7B125%7D%7D%7B5%7D%26%26%5Csqrt%5B3%5D%7Bx%7D%20%5C%5C%20%5Ccline%7B1-7%7D%20%5Cend%7Barray%7D~%5Chspace%7B10em%7Dy%20%3D%20%5Csqrt%5B3%5D%7Bx%7D)
part B)
f(x) = 10 + 20x
so if you rent the bike for a few hours that is
1 hr.............................10 + 20(1)
2 hrs..........................10 + 20(2)
3 hrs..........................10 + 20(3)
so the cost is really some fixed 10 + 20 bucks per hour, usually the 10 bucks is for some paperwork fee, so you go to the bike shop, and they'd say, ok is 10 bucks to set up a membership and 20 bucks per hour for using it, thereabouts.
f(100) = 10 + 20(100) => f(100) = 2010.
f(100), the cost of renting the bike for 100 hours.
Solve the following system:
{6 t - 5 s = -4 | (equation 1)
{-r - 4 s + 3 t = -4 | (equation 2)
{-2 r - 4 s - 4 t = -9 | (equation 3)
Swap equation 1 with equation 3:
{-(2 r) - 4 s - 4 t = -9 | (equation 1)
{-r - 4 s + 3 t = -4 | (equation 2)
{0 r - 5 s + 6 t = -4 | (equation 3)
Subtract 1/2 × (equation 1) from equation 2:
{-(2 r) - 4 s - 4 t = -9 | (equation 1)
{0 r - 2 s + 5 t = 1/2 | (equation 2)
{0 r - 5 s + 6 t = -4 | (equation 3)
Multiply equation 1 by -1:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 2 s + 5 t = 1/2 | (equation 2)
{0 r - 5 s + 6 t = -4 | (equation 3)
Multiply equation 2 by 2:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 4 s + 10 t = 1 | (equation 2)
{0 r - 5 s + 6 t = -4 | (equation 3)
Swap equation 2 with equation 3:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 5 s + 6 t = -4 | (equation 2)
{0 r - 4 s + 10 t = 1 | (equation 3)
Subtract 4/5 × (equation 2) from equation 3:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 5 s + 6 t = -4 | (equation 2)
{0 r+0 s+(26 t)/5 = 21/5 | (equation 3)
Multiply equation 3 by 5:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 5 s + 6 t = -4 | (equation 2)
{0 r+0 s+26 t = 21 | (equation 3)
Divide equation 3 by 26:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 5 s + 6 t = -4 | (equation 2)
{0 r+0 s+t = 21/26 | (equation 3)
Subtract 6 × (equation 3) from equation 2:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r - 5 s+0 t = (-115)/13 | (equation 2)
{0 r+0 s+t = 21/26 | (equation 3)
Divide equation 2 by -5:
{2 r + 4 s + 4 t = 9 | (equation 1)
{0 r+s+0 t = 23/13 | (equation 2)
{0 r+0 s+t = 21/26 | (equation 3)
Subtract 4 × (equation 2) from equation 1:
{2 r + 0 s+4 t = 25/13 | (equation 1)
{0 r+s+0 t = 23/13 | (equation 2)
{0 r+0 s+t = 21/26 | (equation 3)
Subtract 4 × (equation 3) from equation 1:
{2 r+0 s+0 t = (-17)/13 | (equation 1)
{0 r+s+0 t = 23/13 | (equation 2)
{0 r+0 s+t = 21/26 | (equation 3)
Divide equation 1 by 2:
{r+0 s+0 t = (-17)/26 | (equation 1)
{0 r+s+0 t = 23/13 | (equation 2)
v0 r+0 s+t = 21/26 | (equation 3)
Collect results:Answer: {r = -17/26
{s = 23/13 {t = 21/26
Answer:
a.) DomainL: -2 ≥ x < 1 Range: 1 ≥ y < 2
b.) DomainL: -2 > x < 2 Range: -2 > y < 2
Step-by-step explanation:
look up what the open and closed dots mean
understand how to determine values on the y or x axis
9514 1404 393
Answer:
in any numerical computation; numerical values can only be rational numbers
Step-by-step explanation:
Any time a number is written down as a numerical value, it is a rational number. The numerical values we give to π or e or any root, logarithm, trig function, and polynomial solution are, of necessity, rational approximations to the true value. An "exact" value for an irrational number cannot be written down, so it must be approximated any time its numerical value is needed.