Answer:
(1) All sides are equal/parell (2) All angles measure 90 degrees. (3) The diagonal is angles
This point falls on none of your possible answers.
We can first tell that it falls neither positive or negative in terms of x since the x value is 0.
We can also tell the y term is negative. Therefore, it would fall on the negative y-axis.
Answer:
u = -2, -3/5
General Formulas and Concepts:
<u>Algebra I</u>
- Standard Form: ax² + bx + c = 0
- Factoring
- Finding roots
Step-by-step explanation:
<u>Step 1: Define equation</u>
5u² + 6 = -13u
<u>Step 2: Solve for </u><em><u>u</u></em>
- Rewrite: 5u² + 13u + 6 = 0
- Factor: (u + 2)(5u + 3) = 0
- Find roots: u = -2, -3/5
Answer:
Step-by-step explanation:
1=5-4+3-2-1;
2=(5-4+3-2)*1;
3=((5+4)/3) * (2-1);
4=(5+4-3-2)*1;
5=5*(4-3)*(2-1);
6=5-4+(3*2)-1;
7=5+4-3+2-1;
8=(5+4-3+2)*1;
9=5+4+3-2-1;
10=5+4+(3-2)*1;
11=5+4+3-2+1;
12=(5+4-3)*(2*1);
13=((5+4-3)*2)+1;
14=(5+4+3+2)*1;
15=5+4+3+2+1;
16=5+4+(3*2)+1;
17=5+(4*3)*(2-1);
18=5+(4*3)+2-1;
19=(5*4)-3+(2*1);
20=(5*4)-3+2+1;
21=(5*4)+3-(2*1);
22=(5*4)+3-2+1;
23=(5*4)+3*(2-1);
24=(5*4)+3+2-1;
25=(5*4)+3+(2*1);
26=(5*4)+3+2+1;
27=(5*4)+(3*2)+1;
28=5+(4*3*2)-1;
29=5+(4*3*2*1);
30=5+(4*3*2)+1;
31=((5*4*3)/2)+1;
32=5*(4+3)-2-1;
33=5*(4+3)-(2*1);
34=5*(4+3)-2+1;
35=5*(4+3)*(2-1);
36=5*(4+3)+2-1;
37=5*(4+3)+(2*1);
38=5*(4+3)+2+1;
(no equation for 39);
40=5*(4+3+2-1)