Answer:
t = 9
Step-by-step explanation:
There are no constants here. But we have x and y here.
We will create an equation which is:
2y+3x=54.
But we will also create a second equation which states the number of seats.
x+y=24.
Now we do the two-equation solving method.
2y+3x=54
-2(x+y=24)
2y+3x=54
-2x-2y=-48
x=6
To solve for y, plug in x into one of the original equations. Which one doesn't matter.
y+6=24
y=18
Answer: D. To produce treatment groups with similar characteristics
Step-by-step explanation:
By using randomization in sampling, the Sample would be more representative of the Population it is based off of because different demographic characteristics may be picked.
This leads to a situation where the groups have similar characteristics between themselves thereby making it easier for comparison. For example, Group 1 would have certain types of people that will be represented in Group 2 and Group 3 as well. That way the effects of the drug can be properly studied as it affects different people. For instance, say there are 4 obese people in a sample of 10, instead of group one having all obese people, randomization may be able to give group one, 2 obese people and 2 obese people to group 2 as well. That way when comparing, the effects of the drug on the two groups is easier to be compared because the two groups have similar people.
Answer: The length of the rectangle is 35 in.
The width of the rectangle is 28 in.
_________________________________________________________
Explanation:
_________________________________________________________
The formula for the area, "A", of a rectangle:
Area (A) = length (L) * width (w) ;
that is: " A = L * w " ;
A = 980 in² (given);
ratio of the length to the width is: " 5 : 4 " (given);
→ Find the length (L) and the width (w).
_________________________________________________________
→ 980 in² = (5x) * (4x) ;
in which: " 980 in² " is the area of the triangle;
" 5x" = the length (L) of the rectangle, for which we shall solve;
" 4x" = the width (w) of the rectangle, for which we shall solve.
_______________________________________________________
If we find solve for "x" ; we can solve for "5x" and "4x" (the "length" and the "width", respectively); by plugging in the solved value for "x" ;
_______________________________________________________
→ 980 in² = (5x) * (4x) ;
↔ (5x) * (4x) = 980 in² ;
→ (5x) * (4x) = (5) * (4) * (x) * (x) = 20 * x² = 20x² ;
→ 20x² = 980 ;
Divide each side by "10" ; by canceling out a "0" on each side of the equation:
→ 2x² = 98 ;
Now, divide each side of the equation by "2" ;
→ 2x² / 2 = 98 / 2 ;
to get:
→ x² = 49 ;
Now, take the "positive square root" of each side of the equation; (since a "length or width" cannot be a "negative value") ;
to isolate "x" on one side of the equation; & to solve for "x" ;
→ ⁺√(x²) = √49 ;
to get:
→ x = 7 ;
______________________________________________________
Now, we can solve for the "length" and the "width" ;
→ The length is: "5x" ;
5x = 5(7) = " 35 in " ;
______________________________________________________
→ The width is: "4x" ;
4x = 4(7) = "28 in."
______________________________________________________
Let us check our answer:
→ A = L * w ;
→ 980 in² = ? 35 in. * 28 in. ?? ;
Using a calculator: "35 * 28 = 980" . Yes! ;
____________________________________________________
{ Also note: " in * in = in² " ? Yes! } .
____________________________________________________