The ch4 molecule exhibits hydrogen bonding.
This statement is false. A CH4 molecule do not have a hydrogen bonding instead it has dipole dipole attraction.
Hydrogen bonding occurs when a hydrogen atom is covalently bonded to an N, O, or F atom.
This would be a true statement. A hydrogen bond is present when an atom of hydrogen shares electrons with O, N or F atom.
A hydrogen bond is equivalent to a covalent bond.
This is a false statement. A hydrogen bond is an intermolecular force of attraction while covalent bond is a intramolecular force. So, they would mean different things.
a hydrogen bond is possible with only certain hydrogen-containing compounds.
This would be true. Without the presence of an hydrogen atom definitely there would be no hydrogen bond.
a hydrogen atom acquires a partial positive charge when it is covalently bonded to an f atom.
This would be true since a HF is a polar molecule.
<span>E=hν</span> where E is the energy of a single photon, and ν is the frequency of a single photon. We recall that a photon traveling at the speed of light c and a frequency ν will have a wavelength λ given by <span>λ=<span>cν</span></span>λ will have an energy given by <span>E=<span><span>hc</span>λ</span></span><span>λ=657</span> nm. This will be <span>E=<span><span>(6.626×<span>10<span>−34</span></span>)(2.998×<span>108</span>)</span><span>(657×<span>10<span>−9</span></span>)</span></span>=3.0235×<span>10<span>−19</span></span>J</span>
So we now know the energy of one photon of wavelength 657 nm. To find out how many photons are in a laser pulse of 0.363 Joules, we simply divide the pulse energy by the photon energy or <span>N=<span><span>E<span>pulse </span></span><span>E<span>photon</span></span></span>=<span>0.363<span>3.0235×<span>10<span>−19</span></span></span></span>=1.2×<span>1018</span></span>So there would be <span>1.2×<span>1018</span></span><span> photons of wavelength 657 nm in a pulse of laser light of energy 0.363 Joules.</span>
A - its condensation and gas particles have a higher kinetic energy
<span>0.38
You first calculate the total moles by dividing the grams by molecular weight:
45 g N2 / 28.02 g/mol = 1.6 mol N2
40 g Ar / 39.95 g/mol = 1.0 mol
Then you divide the moles of Ar by the total number of moles:
1.0 / (1.6 + 1.0) = 0.38 mol fraction</span>