Answer:
r = 3.61x
M/s
Explanation:
The rate of disappearance (r) is given by the multiplication of the concentrations of the reagents, each one raised of the coefficient of the reaction.
r = k.![[S2O2^{-8} ]^{x} x [I^{-} ]^{y}](https://tex.z-dn.net/?f=%5BS2O2%5E%7B-8%7D%20%5D%5E%7Bx%7D%20x%20%5BI%5E%7B-%7D%20%5D%5E%7By%7D)
K is the constant of the reaction, and doesn't depends on the concentrations. First, let's find the coefficients x and y. Let's use the first and the second experiments, and lets divide 1º by 2º :



x = 1
Now, to find the coefficient y let's do the same for the experiments 1 and 3:




y = 1
Now, we need to calculate the constant k in whatever experiment. Using the first :


k = 4.01x10^{-3} M^{-1}s^{-1}[/tex]
Using the data given,
r = 
r = 3.61x
M/s
It will have 35 ''electrons'' . Basically the number of protons in the nucleus of an atom is always equal to the number of electrons but its just that protons are positively charged and electrons are negatively charged. <span />
NaOH will dissociate as Na+ and OH- in the solution.
An electrolyte is a term used to describe a compound that can dissociate into ions as it is nothing but an ionic compound, a salt made up of a positively charged cation and negatively charged anion.
Here the correct answer is D. Since there are no hydrocarbons or any other organic compound, that do not possess partial let alone full charges, all of them can dissociate in solution to give their ions.
This allows for the solution to be able to conduct electricity.