Aluminum hydroxide
can behave as a base and neutralize sulfuric acid
as in the following equation:
(Balanced)
(a)
. Thus the ratio between the number of moles of the two reactants available:
![n(\text{Al}(\text{OH})_3, \text{supplied}) / n(\text{H}_2\text{SO}_4, \text{supplied})\\= [m(\text{Al}(\text{OH})_3)/ M(\text{Al}(\text{OH})_3)] / [n(\text{H}_2\text{SO}_4) / M(\text{H}_2\text{SO}_4)]\\= [23.7 / (26.98 + 3 \times(16.00 + 1.008))]/[29.5 / (2 \times 1.008 + 32.07 + 4 \times 16.00)]\\\approx 1.01](https://tex.z-dn.net/?f=n%28%5Ctext%7BAl%7D%28%5Ctext%7BOH%7D%29_3%2C%20%5Ctext%7Bsupplied%7D%29%20%2F%20n%28%5Ctext%7BH%7D_2%5Ctext%7BSO%7D_4%2C%20%5Ctext%7Bsupplied%7D%29%5C%5C%3D%20%5Bm%28%5Ctext%7BAl%7D%28%5Ctext%7BOH%7D%29_3%29%2F%20M%28%5Ctext%7BAl%7D%28%5Ctext%7BOH%7D%29_3%29%5D%20%2F%20%5Bn%28%5Ctext%7BH%7D_2%5Ctext%7BSO%7D_4%29%20%2F%20M%28%5Ctext%7BH%7D_2%5Ctext%7BSO%7D_4%29%5D%5C%5C%3D%20%5B23.7%20%2F%20%2826.98%20%2B%203%20%5Ctimes%2816.00%20%2B%201.008%29%29%5D%2F%5B29.5%20%2F%20%282%20%5Ctimes%201.008%20%2B%2032.07%20%2B%204%20%5Ctimes%2016.00%29%5D%5C%5C%5Capprox%201.01)
The value of this ratio required to lead to a complete reaction is derived from coefficients found in the balanced equation:

The ratio for the complete reaction is smaller than that of the reactants available, indicating that the species represented on the numerator,
, is in excess while the one on the denominator,
, serves as the limiting reagent.
(b)
The quantity of water produced is dependent on the amount of limiting reactants available.
of sulfuric acid is supplied in this reaction as the limiting reagent.
moles of water molecules are produced for every
moles of sulfuric acid consumed. The reaction would thus give rise to
of water molecules, which have a mass of
.
(c)

(d)
The quantity of
, the reactant in excess, is dependent on the number of moles of this species consumed in the reaction and thus the quantity of the limiting reagent available. The consumption of every
moles of sulfuric acid, the limiting reagent, removes
moles of aluminum hydroxide
from the solution.
of sulfuric acid is initially available as previously stated such that
, or
, of
would be eventually consumed.
of
would thus be in excess by the end of the reaction process.
Answer:
im pretty sure its the second one
Answer:
In polar Covalent bonds, the electrons which are in bonded shifts towards an atom which has more valance electrons.
<u>Explanation:</u>
We know if an atom takes the electron it acquires a negative charge whereas if it gives an electron it acquires a positive charge in the ionic bond. But here we are talking about covalent bonds. Covalent bonds are those in which atoms share the electron instead of completely giving off the electron. If the atoms are identical in case of covalent bond that is 2 hydrogen atoms then this type of bonding is called pure covalent bonds but if the atoms linked in covalent bonds are different then it is called polar covalent bonds.
In this, the bonding electrons will shift towards an atom which has more valence electron thereby acquiring the partial negative charges and the other atom will acquire a partial positive charge. For example, HCl. In this the Chlorine atom is having more valence electron than hydrogen atom, and hence Chlorine atom has a partial negative charge and Hydrogen atom has a partial positive charge.
Answer:
5.158 × 10²³ atoms K
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
33.49 g K
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of K - 39.10 g/mol
<u>Step 3: Convert</u>
<u />
= 5.15797 × 10²³ atoms K
<u>Step 4: Check</u>
<em>We are given 4 sig figs. Follow sig figs and round.</em>
5.15797 × 10²³ atoms K ≈ 5.158 × 10²³ atoms K