Answer: ![(x-9)^2 + (y-12)^2 = 225\\\\](https://tex.z-dn.net/?f=%28x-9%29%5E2%20%2B%20%28y-12%29%5E2%20%3D%20225%5C%5C%5C%5C)
This is the same as writing (x-9)^2 + (x-12)^2 = 225
========================================================
Explanation:
Any circle equation fits the template of ![(x-h)^2 + (y-k)^2 = r^2\\\\](https://tex.z-dn.net/?f=%28x-h%29%5E2%20%2B%20%28y-k%29%5E2%20%3D%20r%5E2%5C%5C%5C%5C)
The center is (9,12) which tells us the values of h and k in that exact order.
h = 9
k = 12
To find the radius r, we need to find the distance from the center (9,12) to a point on the circle. The only point we know on the circle is the origin (0,0).
Apply the distance formula to find the distance from (9,12) to (0,0)
![d = \sqrt{ (x_1-x_2)^2+(y_1-y_2)^2}\\\\d = \sqrt{ (9-0)^2+(12-0)^2}\\\\d = \sqrt{ (9)^2+(12)^2}\\\\d = \sqrt{ 81+144}\\\\d = \sqrt{ 225}\\\\d = 15\\\\](https://tex.z-dn.net/?f=d%20%3D%20%5Csqrt%7B%20%28x_1-x_2%29%5E2%2B%28y_1-y_2%29%5E2%7D%5C%5C%5C%5Cd%20%3D%20%5Csqrt%7B%20%289-0%29%5E2%2B%2812-0%29%5E2%7D%5C%5C%5C%5Cd%20%3D%20%5Csqrt%7B%20%289%29%5E2%2B%2812%29%5E2%7D%5C%5C%5C%5Cd%20%3D%20%5Csqrt%7B%2081%2B144%7D%5C%5C%5C%5Cd%20%3D%20%5Csqrt%7B%20225%7D%5C%5C%5C%5Cd%20%3D%2015%5C%5C%5C%5C)
The distance from (9,12) to (0,0) is 15 units. Therefore, r = 15
An alternative to finding this r value is to apply the pythagorean theorem. The distance formula is effectively a modified version of the pythagorean theorem.
---------------------
Since h = 9, k = 12 and r = 15, we can then say:
![(x-h)^2 + (y-k)^2 = r^2\\\\(x-9)^2 + (y-12)^2 = 15^2\\\\(x-9)^2 + (y-12)^2 = 225\\\\](https://tex.z-dn.net/?f=%28x-h%29%5E2%20%2B%20%28y-k%29%5E2%20%3D%20r%5E2%5C%5C%5C%5C%28x-9%29%5E2%20%2B%20%28y-12%29%5E2%20%3D%2015%5E2%5C%5C%5C%5C%28x-9%29%5E2%20%2B%20%28y-12%29%5E2%20%3D%20225%5C%5C%5C%5C)
which is the equation of this circle.