This problem is providing us with the molality of a solution of calcium iodide as 0.01 m. So the most likely van't Hoff factor is required and theoretically found to be 3 due to the following:
<h3>Van't Hoff factor:</h3>
In chemistry, the correct characterization of solutions also imply the identification of the ions it will release in aqueous solution. For that reason, the van't Hoff factor gives us an idea of this number, according to the formula the solute has got.
In such a way, for calcium iodide, we write its ionization equation as shown below:

Assuming it is able to ionize due to the low molality, because if it was higher, then it won't ionize. Hence, since we have three moles of ion products, one Ca²⁺ and two I⁻, we can conclude the van't Hoff factor would be 3, although calculations may lead to a different, yet close result.
Learn more about the van't Hoff factor: brainly.com/question/23764376
For the first one the pattern is multiply the previous number by five as you see 1 x 5 = 5 and so on. To keep adding to it you would do
125 x 5 = 625 625 x 5 = 3125 3125 x 5 = 15625
Now for the second one the pattern is divide the previous number by three as you can see 2187 / 3 = 729 and so on. To keep going you would
81 / 3 = 27 27 / 3 = 9 9 / 3 = 3
I hope this helps you and if you have anymore questions i'll be glad to answer them.
Answer:
the same
Explanation:
due to the law of conservation of mass, the mass will not change
The first thing we need to do here is to recognize the unit of molarity and the units of the given percentage of nitric acid.
Molarity is mol HNO3 / L of solution. This is our aim
The given percentage is 0.68 g HNO3/ g solution
multiplying this with density to convert g solution into mL solution and dividing with the molecular weight of HNO3 (63 g/mol) to convert g HNO3 to mol. Therefore we obtain
0.016 mol/ mL or 16.23 mol/ L (M)
Answer:
The correct answer is reduction.
Explanation:
Nitrogen gas reacts with hydrogen gas and get reduced to form ammonia. In this reaction.This is important reaction of atmospheric nitrogen fixation.The reaction is carried out by many nitrogen fixing bacteria such as Azotobacter,Clostridium etc.
N2+3H2+6e- = 2NH3